La figure \ref{forceinclinee} présente la situation. On peut y voir les trois forces extérieures et, en rouge , la décomposition de la force F en ses composantes sur les axes (remarquez qu'on a représenté les composantes par des vecteurs, ce qui est courant en physique lors de la décomposition de forces parce qu'on peut alors comprendre celle-ci comme un remplacement de la force F par deux forces qui en forment la somme).
Commençons par trouver les forces exercées par les câbles sur la lampe. Considérons donc la lampe comme système. Pour des câbles souples la force est exercée le long du câble. La situation est donc celle de la figure \ref{lampe}.
On commence par choisir le système. Pour éviter de devoir calculer la tension dans la corde, on le choisit comme constitué de la corde et des deux masses M et m.
Les forces extérieures sont alors au nombre de trois. Le plan horizontal exerce sur la masse M une force de soutient verticale égale et opposée à son poids (mais qui ne sont pas l'action et la réaction l'une de l'autre), puisque la masse se déplace horizontalement. Ces deux forces s'annulent donc. Reste le poids de la masse m, seule force extérieure à agir pour accélérer le système.
Deux forces agissent ici~: la réaction du plan, qui lui est normale (c'est-à-dire perpendiculaire), et le poids de la masse. Comme la réaction du plan n'a aucune composante parallèlement au plan, elle ne peut être responsable de l'accélération de la masse le long de celui-ci.
Il faut donc trouver la composante du poids qui est parallèle au plan incliné. L'angle entre le poids et un plan horizontal est de \SI{90}{\degree}. Quand le plan est incliné, cet angle diminue de la valeur de l'inclinaison. L'angle \(\beta\) entre le plan incliné et le poids et donc \(\beta=90-\alpha\).
Comme la projection du poids selon l'angle \(\beta\) correspond à sa composante parallèle au plan, dans le triangle rectangle composé du poids comme hypoténuse et de ses composantes parallèle et perpendiculaire au plan, la composante parallèle au plan correspond au côté adjacent. Ainsi, on peut écrire~:
\begin{align*}
P_{//}&=P\cdot\cos(\beta)=P\cdot\cos(90-\alpha)\\
&=P\cdot\sin(\alpha)
\end{align*}
La seconde loi de Newton s'écrit donc le long du plan incliné~:
Une autre manière de résoudre le problème est de procéder avec méthode. Le système qu'on doit choisir est bien évidemment la masse m, puisque c'est de celle-ci qu'on cherche l'accélération pour en trouver la vitesse au bout de \SI{2}{\second}.
La figure \ref{incline} présente ensuite le dessin des forces extérieures et le choix du système d'axes. Remarquez que ce dernier l'a été selon l'inclinaison du plan. Il aurait pu ne pas en être ainsi, mais ce choix simplifie les calculs, car la masse étant contrainte à se déplacer le long du plan, son accélération perpendiculairement est nulle. Les équations de la seconde loi de Newton, obtenues par projection des forces extérieures et de l'accélération selon les axes, peuvent alors s'écrire~:
Si on considère l'angle \(\alpha\), en s'imaginant le plan incliné horizontal, on comprends qu'il se reporte entre le vecteur poids \(\overleftarrow{P}\) et sa composante selon y \(P_y\).
Le problème peut paraître complexe du fait de la présence de deux objets distincts se déplaçant selon deux axes différents. Pourtant, le fait que la corde soit inextensible fait de l'ensemble des deux masse et de la corde un système se déplaçant avec la même accélération. De plus, pour autant qu'on considère correctement l'action des forces sur chaque masse, on peut s'imaginer ce système se déplaçant d'un bloc horizontalement.
Comme on ne connaît pas la tension dans la corde (on ne peut s'imaginer à priori qu'elle correspond au poids de la masse m), le choix du système comprenant les deux masses et la corde s'impose, car ainsi la tension dans la corde, en tant que force intérieure, n'apparaîtra pas dans les équations de Newton.
Comme déjà dit, on peut considérer le système d'un seul tenant. On va donc imaginer un axe suivant la corde et orienté vers le bas du plan incliné, car la masse M étant plus grande que m, il est évident que le mouvement se fera dans ce sens. Ainsi, le signe de l'accélération sera positif.
La dernière est toujours perpendiculaire à la corde et ne participe donc pas au mouvement des masses. La troisième est toujours parallèle à la corde. La seconde est toujours perpendiculaire au plan incliné et ne participe elle aussi pas au mouvement. La première à une composante perpendiculaire au plan incliné et ne participe pas au mouvement, mais aussi une composante parallèle à ce plan et doit être considérée.
Avec l'angle \(\alpha\) défini, on peut reprendre le raisonnement évoqué au problème \ref{planinclinesimple}, évoquant le triangle rectangle formé par le poids de la masse M et se composantes et affirmant que l'angle \(\alpha\) est celui entre le poids et sa composante perpendiculaire au plan, pour écrire que la composante parallèle au plan vaut~:
Pour calculer la tension dans la corde, il est indispensable de changer de système pour la faire apparaître en tant que force extérieure dans l'équation de Newton.
La corde en premier lieu. Si on la considère seule, à l'une de ses extrémités la masse m exerce sur elle une force \(T_m\) et à l'autre la masse M exerce une tension à priori différente \(T_M\). La force exercée par la poulie reste perpendiculaire et ne contribue pas au mouvement. On peut donc écrire~:
\[T_M-T_m=\mu\cdot a\]
où \(\mu\) est la masse de la corde. Or, si cette masse est nulle, indépendamment de l'accélération, le deux tensions sont égales. Cela est évidemment valable pour tous les éléments de la corde dont on dira donc qu'elle exerce une force \(T\) à déterminer.
Pour calculer la vitesse de chute, il suffit de trouver la vitesse d'un objet en chute libre au bout de \SI{2}{\metre} de déplacement. Avec les équations du MRUA, on a~:
\item Avec pour système la nacelle, la corde et la masse, les deux seules forces extérieures sont le poids P et la force exercée par le ballon F. Tout se déroulant sur un axe vertical, qu'on choisira vers le haut, on peut écrire la seconde loi sur cet axe~:
\[\sum F^{ext}=F-(M+m)\cdot g=(M+m)\cdot a=0\]
puisque l'accélération est nulle. Ainsi, la force F exercée par le ballon sur la nacelle est simplement égale au poids du système~:
Le même raisonnement vaut pour la masse suspendue dont l'accélération est nulle. Ainsi la tension T dans la corde vaut exactement le poids de la masse pendante~:
\item À vitesse constante, la force permettant au ballon de s'élever est donc égale au poids de ce qu'il soulève. La force d'ascension vaut donc \(F=\SI{1765,8}{\newton}\).
Si on lâche \SI{20}{\kilo\gram} de lest, la masse de la nacelle devient égale à \SI{80}{\kilo\gram}. La seconde loi de Newton permet alors de calculer l’accélération~:
On verra ci-dessous que l'utilisation de la seconde loi de Newton permet d'obtenir une relation entre l'accélération de chaque masse, constituant une équation à deux inconnues. Pour déterminer la valeur des deux accélérations, il est donc nécessaire de trouver une seconde équation entre ces deux équations.
Imaginons une poulie suspendue à une corde qui dépasse de celle-ci des deux côtés d'une longueur L, comme présenté sur la figure \ref{cordepoulie}. La demi-circonférence de la poulie vaut aussi L.
Pour le déterminer, il faut considérer qu'en tirant sur la corde pour la faire monter d'une hauteur L, on amène le point A qui est à l'origine au contact de la poulie à la place du point B du haut de la corde (voir figure \ref{cordepoulie}). Si la poulie restait à sa place, on aurait la situation de la figure \ref{cordepoulietiree}). Mais, elle est en réalité libre de monter. Ce qui reste fixe est le point C de la figure \ref{cordepoulie}.
On a donc a répartir une longueur 2L de corde entre le point A de la figure \ref{cordepoulietiree} et le point C de la figure \ref{cordepoulie}. Comme la demi-circonférence de la poulie vaut L, il reste une longueur L à répartir des deux côtés de la poulie, soit L/2 de chaque côté, comme le montre la figure \ref{cordepoulietireejuste}.
Pour revenir au système des deux poulies du problème, la remarque précédente se traduit par le fait que quand la masse m descend d'une longueur L, la masse M monte d'une longueur L/2.
L'accélération étant une distance divisée par un temps au carré, on comprends facilement que cela signifie que l'accélération de la masse m vaut simplement le double de celle de la masse M, soit~:
Les masses étant égales, on pourrait aussi croire que le système est en équilibre. Ce n'est pas le cas. Pour le comprendre, considérons la poulie qui n'est pas accrochée au plafond.
\smallskip
À l'instar d'une poulie suspendue au plafond à laquelle on accroche deux masses identiques pendantes par l'intermédiaire d'une corde, la force totale qu'exerce sur elle le plafond vaut évidemment le poids total des deux masses, puisque la poulie ne bouge pas. Or, pour que chaque masse individuellement ne bouge pas, il faut que la corde qui passe dans la poulie exerce sur chacune d'elle une force égale à son poids. De chaque côté de la poulie, la corde exerce donc une même force et la poulie est tirée vers le bas par l'ensemble de ces deux forces.
Ainsi, sur la poulie qui n'est pas accrochée au plafond, la force totale exercée vers le haut vaut deux fois la tension dans la corde. Vers le bas, seule le poids de la masse M qui lui est suspendue est présent.
De l'autre côté, la masse m retenue par la corde qui passe sur la poulie suspendue au plafond est soumise à un poids identique vers le bas et à une seule force vers le haut exercée par la corde. Comme la masse de la corde est nulle, la tension dans la corde est la même partout.
Finalement, la masse M est tirée vers le haut par deux fois la tension dans la corde et la masse m est retenue par une fois la tension dans la corde. Clairement donc, la première monte et la seconde descend.
Le choix du système d'axe est donc clair~: vers le haut pour la masse M qui monte et vers le bas pour m qui descend, le mouvement se faisant dans cette direction avec une accélération a identique pour les deux masses.
Dans ce problème, on n'utilise pas le système d'axes de la figure \ref{incline} qui est parallèle et normal au plan incliné, mais un système d'axes horizontal et vertical. Les équations du mouvement selon ce système s'écrivent avec des notations évidentes~:
Pour le calcul de cette dernière, il est donc nécessaire de disposer de l'équation supplémentaire donnée par la contrainte imposée à la masse de rester sur le plan incliné, soit la relation spécifiant que la réaction R est égale à la composante perpendiculaire au plan incliné du poids~:
Pour vérifier que ces relations sont correctes, on peut calculer la norme du vecteur accélération qui devrait selon le problème \ref{planinclinesimple} valoir \(a=g\sin(\alpha)\). Le calcul est le suivant~:
Rappelons tout d'abord que l'exercice \ref{massesuspendue} a permis de calculer l'accélération d'un système de deux masses, l'une sur un plan horizontal, la masse M', et l'autre pendant dans le vide, la masse m, accrochée à la première par une ficelle sans masse. Avec un système constitué des deux masses, on a pu montrer que~:
La solution est toute simple. À un instant donné on groupe toute la masse qui glisse sur le plan pour en faire la masse M et toute la masse pendante pour en faire la masse m. Pour cela, définissons une masse par unité de longueur de corde~:
Alors, sur l'axe x, avec la composante du poids parallèle au plan incliné et la force de frottement proportionnelle à la réaction R égale à la composante du poids perpendiculaire au plan, on peut écrire~:
Tant que les deux blocs ne glissent pas, la force de frottement est statique. Si on considère comme système le bloc supérieur, celui-ci étant immobile sur le bloc inférieur, la forces F et celle de frottement s'annulent. Elles sont donc égales et si la force F exercée sur le bloc supérieur augmente, la force de frottement statique augmente également dans une exacte mesure. Cela jusqu'à la valeur de frottement statique maximum exercée par m sur M, donnée par l'équation~:
À partir du moment où le glissement commence, la force de frottement statique maximum devient une force de frottement cinétique. Si les c\oe fficients de frottements statique et cinétique sont égaux, la force de frottement cinétique est égale à celle statique maximale et ne varie plus. Ainsi, sur le bloc du bas ne s'exerce qu'une seule force extérieure, c'est la réaction à la force de frottement cinétique exercée par le bloc du bas sur celui du haut. Sa valeur est donnée par le calcul ci-dessus. Ainsi, on peut écrire pour le système du bas~:
Quant au bloc du haut, deux forces extérieures s'exercent sur lui~: la force F et la force de frottement dynamique, égale à la force de frottement statique maximale. Pour ce système, on peut écrire~:
Pour que ce bloc ne tombe pas, il faut qu'une force verticale s'exerce vers le haut et compense le poids calculé ci-dessus, soit \(F_{fr}=P\). L'origine de cette force est évidemment le frottement entre les deux blocs. Or, celle-ci dépend de la force exercée par la masse M sur m, notée \(\overrightarrow{N}\), qui joue le rôle de la réaction R du sol pour un objet glissant horizontalement. La figure \ref{blocsuspenduforces} présente la situation qui permet d'exprimer la force de frottement et de déterminer la valeur N de la réaction.
On peut dire en français que pour avoir une force de frottement donnée il faut une réaction normale N de valeur double, en raison du c\oe fficient de frottement particulier ici.
C'est la force normale \(\overrightarrow{N}\) qui est la seule force qui pousse la masse m horizontalement. Elle est donc responsable de l'accélération qu'on peut ainsi calculer simplement à l'aide de la seconde loi~:
Cette accélération est celle de la masse m, mais aussi de M. La valeur F de la force permettant de l'obtenir pour le système constitué par les deux masses est donc finalement~:
Le travail de l'équipe pour remonter le bobsleigh du bas de la piste à son point de départ sert à augmenter l'énergie potentielle du bob. On néglige les frottement exercés sur le véhicule de transport. Ainsi, on a~:
C'est évidemment la même énergie qui est perdue pendant la descente (à l'exception de la poussée initiale). Elle vient du travail du poids sur le bob et les quatre personnes qui se trouvent à l'intérieur.
L'énergie potentielle perdue par le bob sert à augmenter sa vitesse et à lutter contre le frottement. Le travail nécessaire à parvenir à une vitesse de \SI{80}{\kilo\metre\per\hour} est égal à l'énergie cinétique acquise. Pour un bob de \SI{600}{\kilo\gram} et une vitesse moyenne de 80/3,6=\SI{22,2}{\metre\per\second}, on a un travail de~:
Cette valeur est supérieure à l'énergie fournie au bob pendant la montée. C'est normal, car on a pas tenu compte alors de l'énergie nécessaire à monter les personnes. Pour cela, il faut calculer l'énergie potentielle acquise par la masse de \SI{600}{\kilo\gram}~: