Deux exercices supplémentaires avec figure produite avec inkscape et export du texte de la figure dans un fichier latex. Attention, modifications manuelles de ce fichier pour y mettre des commandes latex d'équations.
This commit is contained in:
parent
c7012e7d73
commit
d24295e2c3
@ -26,8 +26,8 @@
|
||||
\newlabel{pendante}{{L.3}{212}}
|
||||
\@writefile{toc}{\contentsline {subsection}{\numberline {L.1.9}Relatifs aux forces}{212}}
|
||||
\newlabel{massedelaterre}{{48}{212}}
|
||||
\@writefile{toc}{\contentsline {subsection}{\numberline {L.1.10}Relatifs \IeC {\`a} l'\IeC {\'e}nergie}{212}}
|
||||
\newlabel{helico}{{54}{212}}
|
||||
\@writefile{toc}{\contentsline {subsection}{\numberline {L.1.10}Relatifs \IeC {\`a} l'\IeC {\'e}nergie}{213}}
|
||||
\newlabel{helico}{{54}{213}}
|
||||
\@writefile{toc}{\contentsline {subsection}{\numberline {L.1.11}Relatifs \IeC {\`a} la conservation de l'\IeC {\'e}nergie}{213}}
|
||||
\@writefile{toc}{\contentsline {subsection}{\numberline {L.1.12}Relatifs \IeC {\`a} l'\IeC {\'e}nergie hydraulique}{213}}
|
||||
\@writefile{toc}{\contentsline {subsection}{\numberline {L.1.13}Relatifs \IeC {\`a} l'\IeC {\'e}nergie \IeC {\'e}olienne}{213}}
|
||||
@ -36,8 +36,10 @@
|
||||
\newlabel{ascenseur}{{L.4}{214}}
|
||||
\@writefile{toc}{\contentsline {section}{\numberline {L.2}Solutions}{214}}
|
||||
\@writefile{toc}{\contentsline {section}{\numberline {L.3}Solutions OS}{220}}
|
||||
\@writefile{lof}{\contentsline {figure}{\numberline {L.5}{\ignorespaces Plan inclin\IeC {\'e}}}{221}}
|
||||
\newlabel{incline}{{L.5}{221}}
|
||||
\@setckpt{Annexe-Exercices/Annexe-Exercices}{
|
||||
\setcounter{page}{221}
|
||||
\setcounter{page}{222}
|
||||
\setcounter{equation}{0}
|
||||
\setcounter{enumi}{3}
|
||||
\setcounter{enumii}{0}
|
||||
@ -52,7 +54,7 @@
|
||||
\setcounter{subsubsection}{0}
|
||||
\setcounter{paragraph}{0}
|
||||
\setcounter{subparagraph}{0}
|
||||
\setcounter{figure}{4}
|
||||
\setcounter{figure}{5}
|
||||
\setcounter{table}{0}
|
||||
\setcounter{FancyVerbLine}{0}
|
||||
\setcounter{float@type}{8}
|
||||
@ -73,7 +75,7 @@
|
||||
\setcounter{lstnumber}{1}
|
||||
\setcounter{Solution}{26}
|
||||
\setcounter{exc}{71}
|
||||
\setcounter{Solution OS}{2}
|
||||
\setcounter{exosc}{2}
|
||||
\setcounter{Solution OS}{3}
|
||||
\setcounter{exosc}{3}
|
||||
\setcounter{lstlisting}{0}
|
||||
}
|
||||
|
@ -892,6 +892,74 @@ On lâche la première à vitesse initiale nulle. Calculez la vitesse de la seco
|
||||
\end{solos}
|
||||
\end{exos}
|
||||
|
||||
\begin{exos}
|
||||
On lâche, à vitesse initiale nulle, une masse m de \unit{3}{\kilo\gram}, sur un plan incliné d'un angle \(\alpha = \unit{20}{\degree}\) sans frottements. Calculez sa vitesse après un temps t de \unit{2}{\second}. Réponse~: \unit{9,72}{\metre\per\second}.
|
||||
\begin{solos}
|
||||
Deux forces agissent ici : la réaction du plan, qui lui est normale (c'est-à-dire perpendiculaire), et le poids de la masse. Comme la réaction du plan n'a aucune composante parallèlement au plan, elle ne peut être responsable de l'accélération de la masse le long de celui-ci.
|
||||
|
||||
Il faut donc trouver la composante du poids qui est parallèle au plan incliné. L'angle entre le poids et un plan horizontal est de \unit{90}{\degree}. Quand le plan est incliné, cet angle diminue de la valeur de l'inclinaison. L'angle \(\beta\) entre le plan incliné et le poids et donc \(\beta=90-\alpha\).
|
||||
|
||||
Comme la projection du poids selon l'angle \(\beta\) correspond à sa composante parallèle au plan, dans le triangle rectangle composé du poids comme hypoténuse et de ses composantes parallèle et perpendiculaire au plan, la composante parallèle au plan correspond au côté adjacent. Ainsi, on peut écrire~:
|
||||
\begin{align*}
|
||||
P_{//}&=P\cdot\cos(\beta)=P\cdot\cos(90-\alpha)\\
|
||||
&=P\cdot\sin(\alpha)
|
||||
\end{align*}
|
||||
La seconde loi de Newton s'écrit donc le long du plan incliné~:
|
||||
\begin{align*}
|
||||
\sum F^{ext}=P\cdot\sin(\alpha)&=m\cdot a\;\Rightarrow\\
|
||||
m\cdot g\cdot\sin(\alpha)&=m\cdot a\;\Rightarrow\\
|
||||
a&=g\cdot\sin(\alpha)\;\Rightarrow\\
|
||||
a&=9,81\cdot\sin(20)=\unit{3,36}{\metre\per\second\squared}
|
||||
\end{align*}
|
||||
Avec une vitesse initiale nulle, pour un MRUA d'accélération calculée ci-dessus, la vitesse au bout d'un temps t=\unit{2}{\second} s'obtient par~:
|
||||
\[v=a\cdot t+v_0=3,36\cdot 2=\unit{9,72}{\metre\per\second}\]
|
||||
|
||||
\medskip
|
||||
Une autre manière de résoudre le problème est de procéder avec méthode. Le système qu'on doit choisir est bien évidemment la masse m, puisque c'est de celle-ci qu'on cherche l'accélération pour en trouver la vitesse au bout de \unit{2}{\second}.
|
||||
\begin{figure}[h]
|
||||
\centering
|
||||
\caption[Plan incliné]{Le plan incliné}\label{incline}
|
||||
\medskip
|
||||
\def\svgwidth{6cm}
|
||||
\input{Annexe-Exercices/Images/incline.eps_tex}
|
||||
\end{figure}
|
||||
|
||||
La figure \ref{incline} présente ensuite le dessin des forces extérieures et le choix du système d'axes. Remarquez que ce dernier l'a été selon l'inclinaison du plan. Il aurait pu ne pas en être ainsi, mais ce choix simplifie les calculs, car la masse étant contrainte à se déplacer le long du plan, son accélération perpendiculairement est nulle. Les équations de la seconde loi de Newton, obtenues par projection des forces extérieures et de l'accélération selon les axes, peuvent alors s'écrire :
|
||||
\begin{align*}
|
||||
\sum F^{ext}_x&=P_x=m\cdot a_x &\text{sur l'axe x}\\
|
||||
\sum F^{ext}_y&=R-P_y=m\cdot a_y=0 &\text{sur l'axe y}
|
||||
\end{align*}
|
||||
car l'accélération perpendiculairement au plan est nulle, comme déjà mentionné.
|
||||
|
||||
\smallskip
|
||||
Si on considére l'angle \(\alpha\), en s'imaginant le plan incliné horizontal, on comprends qu'il se reporte entre le vecteur poids \(\overleftarrow{P}\) et sa compostante selon y \(P_y\).
|
||||
|
||||
Avec le triangle rectangle formé par le poids et ses composantes et un peu de trigonométrie, on peut en déduire~:
|
||||
\begin{align*}
|
||||
P_x &= P\cdot \sin(\alpha)\\
|
||||
P_y &= P\cdot \cos(\alpha)
|
||||
\end{align*}
|
||||
Comme par ailleurs on sait que \(P=m\cdot g\), on peut réécrire les équations de Newton sur les axes comme~:
|
||||
\begin{align*}
|
||||
\sum F^{ext}_x&=m\cdot g\cdot \sin(\alpha)=m\cdot a_x\\
|
||||
\sum F^{ext}_y&=R-m\cdot g\cdot \cos(\alpha)=m\cdot a_y=0
|
||||
\end{align*}
|
||||
La première de ces équations permet de trouver l'accélération du bloc selon le plan incliné~:
|
||||
\begin{align*}
|
||||
a=a_x&=g\cdot \sin(\alpha)\\
|
||||
&=9,81\cdot\sin(20)=\unit{3,36}{\metre\per\second\squared}
|
||||
\end{align*}
|
||||
|
||||
\smallskip
|
||||
Mais une information supplémentaire nous est donnée par la seconde équation, c'est la valeur de la réaction R au plan~:
|
||||
\begin{align*}
|
||||
R&=m\cdot g\cdot \cos(\alpha)\\
|
||||
&=3\cdot 9,81\cdot \cos(20)=\unit{27,67}{\newton}
|
||||
\end{align*}
|
||||
|
||||
\end{solos}
|
||||
\end{exos}
|
||||
|
||||
\begin{exos}
|
||||
Un exercice de test.
|
||||
\begin{solos}
|
||||
|
1484
Annexe-Exercices/Annexe-Exercices.tex.bak
Normal file
1484
Annexe-Exercices/Annexe-Exercices.tex.bak
Normal file
File diff suppressed because it is too large
Load Diff
152
Annexe-Exercices/Images/incline.eps
Normal file
152
Annexe-Exercices/Images/incline.eps
Normal file
@ -0,0 +1,152 @@
|
||||
%!PS-Adobe-3.0 EPSF-3.0
|
||||
%%Creator: cairo 1.14.8 (http://cairographics.org)
|
||||
%%CreationDate: Thu Jan 3 21:37:57 2019
|
||||
%%Pages: 1
|
||||
%%DocumentData: Clean7Bit
|
||||
%%LanguageLevel: 2
|
||||
%%BoundingBox: 0 -1 107 139
|
||||
%%EndComments
|
||||
%%BeginProlog
|
||||
save
|
||||
50 dict begin
|
||||
/q { gsave } bind def
|
||||
/Q { grestore } bind def
|
||||
/cm { 6 array astore concat } bind def
|
||||
/w { setlinewidth } bind def
|
||||
/J { setlinecap } bind def
|
||||
/j { setlinejoin } bind def
|
||||
/M { setmiterlimit } bind def
|
||||
/d { setdash } bind def
|
||||
/m { moveto } bind def
|
||||
/l { lineto } bind def
|
||||
/c { curveto } bind def
|
||||
/h { closepath } bind def
|
||||
/re { exch dup neg 3 1 roll 5 3 roll moveto 0 rlineto
|
||||
0 exch rlineto 0 rlineto closepath } bind def
|
||||
/S { stroke } bind def
|
||||
/f { fill } bind def
|
||||
/f* { eofill } bind def
|
||||
/n { newpath } bind def
|
||||
/W { clip } bind def
|
||||
/W* { eoclip } bind def
|
||||
/BT { } bind def
|
||||
/ET { } bind def
|
||||
/pdfmark where { pop globaldict /?pdfmark /exec load put }
|
||||
{ globaldict begin /?pdfmark /pop load def /pdfmark
|
||||
/cleartomark load def end } ifelse
|
||||
/BDC { mark 3 1 roll /BDC pdfmark } bind def
|
||||
/EMC { mark /EMC pdfmark } bind def
|
||||
/cairo_store_point { /cairo_point_y exch def /cairo_point_x exch def } def
|
||||
/Tj { show currentpoint cairo_store_point } bind def
|
||||
/TJ {
|
||||
{
|
||||
dup
|
||||
type /stringtype eq
|
||||
{ show } { -0.001 mul 0 cairo_font_matrix dtransform rmoveto } ifelse
|
||||
} forall
|
||||
currentpoint cairo_store_point
|
||||
} bind def
|
||||
/cairo_selectfont { cairo_font_matrix aload pop pop pop 0 0 6 array astore
|
||||
cairo_font exch selectfont cairo_point_x cairo_point_y moveto } bind def
|
||||
/Tf { pop /cairo_font exch def /cairo_font_matrix where
|
||||
{ pop cairo_selectfont } if } bind def
|
||||
/Td { matrix translate cairo_font_matrix matrix concatmatrix dup
|
||||
/cairo_font_matrix exch def dup 4 get exch 5 get cairo_store_point
|
||||
/cairo_font where { pop cairo_selectfont } if } bind def
|
||||
/Tm { 2 copy 8 2 roll 6 array astore /cairo_font_matrix exch def
|
||||
cairo_store_point /cairo_font where { pop cairo_selectfont } if } bind def
|
||||
/g { setgray } bind def
|
||||
/rg { setrgbcolor } bind def
|
||||
/d1 { setcachedevice } bind def
|
||||
%%EndProlog
|
||||
%%BeginSetup
|
||||
%%EndSetup
|
||||
%%Page: 1 1
|
||||
%%BeginPageSetup
|
||||
%%PageBoundingBox: 0 -1 107 139
|
||||
%%EndPageSetup
|
||||
q 0 -1 107 140 rectclip q
|
||||
0 g
|
||||
0.423925 w
|
||||
0 J
|
||||
0 j
|
||||
[] 0.0 d
|
||||
4 M q 1 0 0 -1 0 138.127029 cm
|
||||
0.105 52.453 m 105.988 114.094 l 3.762 114.102 l S Q
|
||||
1 1 0.984314 rg
|
||||
17.996 99.795 m 55.305 77.838 l 44.715 59.846 l 7.406 81.807 l h
|
||||
17.996 99.795 m f
|
||||
0 g
|
||||
0.646349 w
|
||||
q 1 -0.588594 -0.588594 -1 0 138.127029 cm
|
||||
30.122 20.602 m 67.43 20.6 l 67.43 38.592 l 30.121 38.591 l h
|
||||
30.122 20.602 m S Q
|
||||
1 0 0 rg
|
||||
0.751181 w
|
||||
[ 2.253543 2.253543] 0 d
|
||||
q 1 0 0 -1 0 138.127029 cm
|
||||
32.566 136.648 m 65.309 78.195 l S Q
|
||||
0.976471 0 0 rg
|
||||
0.75 w
|
||||
[] 0.0 d
|
||||
q 1 0 0 -1 0 138.127029 cm
|
||||
32.566 57.977 m 32.566 136.648 l S Q
|
||||
0.898039 0 0 rg
|
||||
32.566 4.479 m 31.066 5.979 l 32.566 0.729 l 34.066 5.979 l h
|
||||
32.566 4.479 m f*
|
||||
0.976471 0 0 rg
|
||||
0.4 w
|
||||
q 0 1 1 0 0 138.127029 cm
|
||||
-133.648 32.566 m -132.148 31.066 l -137.398 32.566 l -132.148 34.066 l
|
||||
h
|
||||
-133.648 32.566 m S Q
|
||||
0 0 0.960784 rg
|
||||
0.751181 w
|
||||
q 1 0 0 -1 0 138.127029 cm
|
||||
32.566 57.977 m 79.594 86.984 l S Q
|
||||
77.035 52.721 m 74.969 52.229 l 80.23 50.748 l 76.543 54.787 l h
|
||||
77.035 52.721 m f*
|
||||
0.340981 w
|
||||
q -1 0.616822 0.616822 1 0 138.127029 cm
|
||||
-93.965 -27.447 m -92.688 -28.726 l -97.161 -27.448 l -92.685 -26.17 l
|
||||
h
|
||||
-93.965 -27.447 m S Q
|
||||
0.751181 w
|
||||
q 1 0 0 -1 0 138.127029 cm
|
||||
32.566 57.977 m 57.617 14.465 l S Q
|
||||
56.117 121.057 m 56.668 119.006 l 57.992 124.315 l 54.066 120.506 l h
|
||||
56.117 121.057 m f*
|
||||
0.347195 w
|
||||
q -0.575758 -1 -1 0.575758 0 138.127029 cm
|
||||
-11.445 -49.527 m -10.143 -50.828 l -14.703 -49.527 l -10.145 -48.225 l
|
||||
h
|
||||
-11.445 -49.527 m S Q
|
||||
0.984314 0 0 rg
|
||||
0.75 w
|
||||
[ 2.25 2.25] 0 d
|
||||
q 1 0 0 -1 0 138.127029 cm
|
||||
32.566 57.977 m 65.309 78.195 l S Q
|
||||
0.996078 0 0 rg
|
||||
32.566 80.15 m 65.309 136.846 l f
|
||||
0.988235 0 0 rg
|
||||
[] 0.0 d
|
||||
q 1 0 0 -1 0 138.127029 cm
|
||||
32.566 57.977 m 65.309 1.281 l S Q
|
||||
0.996078 0 0 rg
|
||||
63.809 134.248 m 64.355 132.201 l 65.684 137.498 l 61.758 133.701 l h
|
||||
63.809 134.248 m f*
|
||||
0.988235 0 0 rg
|
||||
0.346385 w
|
||||
q -0.577519 -1 -1 0.577519 0 138.127029 cm
|
||||
-24.725 -49.529 m -23.427 -50.826 l -27.974 -49.528 l -23.427 -48.228 l
|
||||
h
|
||||
-24.725 -49.529 m S Q
|
||||
0 g
|
||||
0.75 w
|
||||
q 1 0 0 -1 0 138.127029 cm
|
||||
84.957 101.828 m 80.945 108.211 81.09 114.25 81.09 114.25 c S Q
|
||||
Q Q
|
||||
showpage
|
||||
%%Trailer
|
||||
end restore
|
||||
%%EOF
|
61
Annexe-Exercices/Images/incline.eps_tex
Normal file
61
Annexe-Exercices/Images/incline.eps_tex
Normal file
@ -0,0 +1,61 @@
|
||||
%% Creator: Inkscape inkscape 0.92.1, www.inkscape.org
|
||||
%% PDF/EPS/PS + LaTeX output extension by Johan Engelen, 2010
|
||||
%% Accompanies image file 'incline.eps' (pdf, eps, ps)
|
||||
%%
|
||||
%% To include the image in your LaTeX document, write
|
||||
%% \input{<filename>.pdf_tex}
|
||||
%% instead of
|
||||
%% \includegraphics{<filename>.pdf}
|
||||
%% To scale the image, write
|
||||
%% \def\svgwidth{<desired width>}
|
||||
%% \input{<filename>.pdf_tex}
|
||||
%% instead of
|
||||
%% \includegraphics[width=<desired width>]{<filename>.pdf}
|
||||
%%
|
||||
%% Images with a different path to the parent latex file can
|
||||
%% be accessed with the `import' package (which may need to be
|
||||
%% installed) using
|
||||
%% \usepackage{import}
|
||||
%% in the preamble, and then including the image with
|
||||
%% \import{<path to file>}{<filename>.pdf_tex}
|
||||
%% Alternatively, one can specify
|
||||
%% \graphicspath{{<path to file>/}}
|
||||
%%
|
||||
%% For more information, please see info/svg-inkscape on CTAN:
|
||||
%% http://tug.ctan.org/tex-archive/info/svg-inkscape
|
||||
%%
|
||||
\begingroup%
|
||||
\makeatletter%
|
||||
\providecommand\color[2][]{%
|
||||
\errmessage{(Inkscape) Color is used for the text in Inkscape, but the package 'color.sty' is not loaded}%
|
||||
\renewcommand\color[2][]{}%
|
||||
}%
|
||||
\providecommand\transparent[1]{%
|
||||
\errmessage{(Inkscape) Transparency is used (non-zero) for the text in Inkscape, but the package 'transparent.sty' is not loaded}%
|
||||
\renewcommand\transparent[1]{}%
|
||||
}%
|
||||
\providecommand\rotatebox[2]{#2}%
|
||||
\ifx\svgwidth\undefined%
|
||||
\setlength{\unitlength}{106.77441736bp}%
|
||||
\ifx\svgscale\undefined%
|
||||
\relax%
|
||||
\else%
|
||||
\setlength{\unitlength}{\unitlength * \real{\svgscale}}%
|
||||
\fi%
|
||||
\else%
|
||||
\setlength{\unitlength}{\svgwidth}%
|
||||
\fi%
|
||||
\global\let\svgwidth\undefined%
|
||||
\global\let\svgscale\undefined%
|
||||
\makeatother%
|
||||
\begin{picture}(1,1.29363406)%
|
||||
\put(0,0){\includegraphics[width=\unitlength]{incline.eps}}%
|
||||
\put(0.67902026,0.56540081){\color[rgb]{0,0,0}\makebox(0,0)[lb]{\smash{\color{blue} axe x}}}%
|
||||
\put(0.59900605,1.15776346){\color[rgb]{0,0,0}\makebox(0,0)[lb]{\smash{\color{red} \(\overrightarrow{R}\)}}}%
|
||||
\put(0.21422361,0.31509077){\color[rgb]{0,0,0}\makebox(0,0)[lb]{\smash{\color{red} \(\overrightarrow{P}\)}}}%
|
||||
\put(0.53636474,0.65038223){\color[rgb]{0,0,0}\makebox(0,0)[lb]{\smash{\color{red} \(P_x\)}}}%
|
||||
\put(0.38750425,0.36370219){\color[rgb]{0,0,0}\makebox(0,0)[lb]{\smash{\color{red} \(P_y\)}}}%
|
||||
\put(0.26900618,0.98977412){\color[rgb]{0,0,0}\makebox(0,0)[lb]{\smash{\color{blue} axe y}}}%
|
||||
\put(0.69287272,0.28532333){\color[rgb]{0,0,0}\makebox(0,0)[lb]{\smash{\(\alpha\)}}}%
|
||||
\end{picture}%
|
||||
\endgroup%
|
61
Annexe-Exercices/Images/incline.eps_tex.bak
Normal file
61
Annexe-Exercices/Images/incline.eps_tex.bak
Normal file
@ -0,0 +1,61 @@
|
||||
%% Creator: Inkscape inkscape 0.92.1, www.inkscape.org
|
||||
%% PDF/EPS/PS + LaTeX output extension by Johan Engelen, 2010
|
||||
%% Accompanies image file 'incline.eps' (pdf, eps, ps)
|
||||
%%
|
||||
%% To include the image in your LaTeX document, write
|
||||
%% \input{<filename>.pdf_tex}
|
||||
%% instead of
|
||||
%% \includegraphics{<filename>.pdf}
|
||||
%% To scale the image, write
|
||||
%% \def\svgwidth{<desired width>}
|
||||
%% \input{<filename>.pdf_tex}
|
||||
%% instead of
|
||||
%% \includegraphics[width=<desired width>]{<filename>.pdf}
|
||||
%%
|
||||
%% Images with a different path to the parent latex file can
|
||||
%% be accessed with the `import' package (which may need to be
|
||||
%% installed) using
|
||||
%% \usepackage{import}
|
||||
%% in the preamble, and then including the image with
|
||||
%% \import{<path to file>}{<filename>.pdf_tex}
|
||||
%% Alternatively, one can specify
|
||||
%% \graphicspath{{<path to file>/}}
|
||||
%%
|
||||
%% For more information, please see info/svg-inkscape on CTAN:
|
||||
%% http://tug.ctan.org/tex-archive/info/svg-inkscape
|
||||
%%
|
||||
\begingroup%
|
||||
\makeatletter%
|
||||
\providecommand\color[2][]{%
|
||||
\errmessage{(Inkscape) Color is used for the text in Inkscape, but the package 'color.sty' is not loaded}%
|
||||
\renewcommand\color[2][]{}%
|
||||
}%
|
||||
\providecommand\transparent[1]{%
|
||||
\errmessage{(Inkscape) Transparency is used (non-zero) for the text in Inkscape, but the package 'transparent.sty' is not loaded}%
|
||||
\renewcommand\transparent[1]{}%
|
||||
}%
|
||||
\providecommand\rotatebox[2]{#2}%
|
||||
\ifx\svgwidth\undefined%
|
||||
\setlength{\unitlength}{106.77441736bp}%
|
||||
\ifx\svgscale\undefined%
|
||||
\relax%
|
||||
\else%
|
||||
\setlength{\unitlength}{\unitlength * \real{\svgscale}}%
|
||||
\fi%
|
||||
\else%
|
||||
\setlength{\unitlength}{\svgwidth}%
|
||||
\fi%
|
||||
\global\let\svgwidth\undefined%
|
||||
\global\let\svgscale\undefined%
|
||||
\makeatother%
|
||||
\begin{picture}(1,1.29363406)%
|
||||
\put(0,0){\includegraphics[width=\unitlength]{incline.eps}}%
|
||||
\put(0.67902026,0.56540081){\color[rgb]{0,0,0}\makebox(0,0)[lb]{\smash{\color{blue} axe x}}}%
|
||||
\put(0.59900605,1.15776346){\color[rgb]{0,0,0}\makebox(0,0)[lb]{\smash{\color{red} \(\overrightarrow{R}\)}}}%
|
||||
\put(0.21422361,0.31509077){\color[rgb]{0,0,0}\makebox(0,0)[lb]{\smash{\color{red} \(\overrightarrow{P}\)}}}%
|
||||
\put(0.53636474,0.65038223){\color[rgb]{0,0,0}\makebox(0,0)[lb]{\smash{\color{red} \(P_x\)}}}%
|
||||
\put(0.38750425,0.36370219){\color[rgb]{0,0,0}\makebox(0,0)[lb]{\smash{\color{red} \(P_y\)}}}%
|
||||
\put(0.26900618,0.98977412){\color[rgb]{0,0,0}\makebox(0,0)[lb]{\smash{\color{blue} axe y}}}%
|
||||
\put(0.69287272,0.28532333){\color[rgb]{0,0,0}\makebox(0,0)[lb]{\smash{\(\alpha\)}}}%
|
||||
\end{picture}%
|
||||
\endgroup%
|
268
Annexe-Exercices/Images/incline.svg
Normal file
268
Annexe-Exercices/Images/incline.svg
Normal file
@ -0,0 +1,268 @@
|
||||
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||||
<!-- Created with Inkscape (http://www.inkscape.org/) -->
|
||||
|
||||
<svg
|
||||
xmlns:dc="http://purl.org/dc/elements/1.1/"
|
||||
xmlns:cc="http://creativecommons.org/ns#"
|
||||
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
|
||||
xmlns:svg="http://www.w3.org/2000/svg"
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
|
||||
xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
|
||||
width="210mm"
|
||||
height="297mm"
|
||||
viewBox="0 0 210 297"
|
||||
version="1.1"
|
||||
id="svg8"
|
||||
inkscape:version="0.92.1 r15371"
|
||||
sodipodi:docname="incline.svg">
|
||||
<defs
|
||||
id="defs2">
|
||||
<marker
|
||||
inkscape:stockid="Arrow1Mstart"
|
||||
orient="auto"
|
||||
refY="0.0"
|
||||
refX="0.0"
|
||||
id="Arrow1Mstart"
|
||||
style="overflow:visible"
|
||||
inkscape:isstock="true">
|
||||
<path
|
||||
id="path829"
|
||||
d="M 0.0,0.0 L 5.0,-5.0 L -12.5,0.0 L 5.0,5.0 L 0.0,0.0 z "
|
||||
style="fill-rule:evenodd;stroke:#ff0000;stroke-width:1pt;stroke-opacity:1;fill:#ff0000;fill-opacity:1"
|
||||
transform="scale(0.4) translate(10,0)" />
|
||||
</marker>
|
||||
<marker
|
||||
inkscape:isstock="true"
|
||||
style="overflow:visible;"
|
||||
id="marker2105"
|
||||
refX="0.0"
|
||||
refY="0.0"
|
||||
orient="auto"
|
||||
inkscape:stockid="Arrow1Mend">
|
||||
<path
|
||||
transform="scale(0.4) rotate(180) translate(10,0)"
|
||||
style="fill-rule:evenodd;stroke:#fc0000;stroke-width:1pt;stroke-opacity:1;fill:#fe0000;fill-opacity:1"
|
||||
d="M 0.0,0.0 L 5.0,-5.0 L -12.5,0.0 L 5.0,5.0 L 0.0,0.0 z "
|
||||
id="path2103" />
|
||||
</marker>
|
||||
<marker
|
||||
inkscape:isstock="true"
|
||||
style="overflow:visible;"
|
||||
id="marker1295"
|
||||
refX="0.0"
|
||||
refY="0.0"
|
||||
orient="auto"
|
||||
inkscape:stockid="Arrow1Mend">
|
||||
<path
|
||||
transform="scale(0.4) rotate(180) translate(10,0)"
|
||||
style="fill-rule:evenodd;stroke:#0000f5;stroke-width:1pt;stroke-opacity:1;fill:#0000f5;fill-opacity:1"
|
||||
d="M 0.0,0.0 L 5.0,-5.0 L -12.5,0.0 L 5.0,5.0 L 0.0,0.0 z "
|
||||
id="path1293" />
|
||||
</marker>
|
||||
<marker
|
||||
inkscape:stockid="Arrow1Mend"
|
||||
orient="auto"
|
||||
refY="0.0"
|
||||
refX="0.0"
|
||||
id="marker1241"
|
||||
style="overflow:visible;"
|
||||
inkscape:isstock="true"
|
||||
inkscape:collect="always">
|
||||
<path
|
||||
id="path1239"
|
||||
d="M 0.0,0.0 L 5.0,-5.0 L -12.5,0.0 L 5.0,5.0 L 0.0,0.0 z "
|
||||
style="fill-rule:evenodd;stroke:#0000f5;stroke-width:1pt;stroke-opacity:1;fill:#0000f5;fill-opacity:1"
|
||||
transform="scale(0.4) rotate(180) translate(10,0)" />
|
||||
</marker>
|
||||
<marker
|
||||
inkscape:stockid="Arrow1Mend"
|
||||
orient="auto"
|
||||
refY="0.0"
|
||||
refX="0.0"
|
||||
id="marker1139"
|
||||
style="overflow:visible;"
|
||||
inkscape:isstock="true">
|
||||
<path
|
||||
id="path1137"
|
||||
d="M 0.0,0.0 L 5.0,-5.0 L -12.5,0.0 L 5.0,5.0 L 0.0,0.0 z "
|
||||
style="fill-rule:evenodd;stroke:#f90000;stroke-width:1pt;stroke-opacity:1;fill:#e50000;fill-opacity:1"
|
||||
transform="scale(0.4) rotate(180) translate(10,0)" />
|
||||
</marker>
|
||||
<marker
|
||||
inkscape:stockid="Arrow1Mend"
|
||||
orient="auto"
|
||||
refY="0.0"
|
||||
refX="0.0"
|
||||
id="Arrow1Mend"
|
||||
style="overflow:visible;"
|
||||
inkscape:isstock="true">
|
||||
<path
|
||||
id="path832"
|
||||
d="M 0.0,0.0 L 5.0,-5.0 L -12.5,0.0 L 5.0,5.0 L 0.0,0.0 z "
|
||||
style="fill-rule:evenodd;stroke:#000000;stroke-width:1pt;stroke-opacity:1;fill:#000000;fill-opacity:1"
|
||||
transform="scale(0.4) rotate(180) translate(10,0)" />
|
||||
</marker>
|
||||
</defs>
|
||||
<sodipodi:namedview
|
||||
id="base"
|
||||
pagecolor="#ffffff"
|
||||
bordercolor="#666666"
|
||||
borderopacity="1.0"
|
||||
inkscape:pageopacity="0.0"
|
||||
inkscape:pageshadow="2"
|
||||
inkscape:zoom="2.9083205"
|
||||
inkscape:cx="298.60998"
|
||||
inkscape:cy="874.98007"
|
||||
inkscape:document-units="mm"
|
||||
inkscape:current-layer="layer1"
|
||||
showgrid="false"
|
||||
inkscape:window-width="1400"
|
||||
inkscape:window-height="995"
|
||||
inkscape:window-x="0"
|
||||
inkscape:window-y="0"
|
||||
inkscape:window-maximized="1" />
|
||||
<metadata
|
||||
id="metadata5">
|
||||
<rdf:RDF>
|
||||
<cc:Work
|
||||
rdf:about="">
|
||||
<dc:format>image/svg+xml</dc:format>
|
||||
<dc:type
|
||||
rdf:resource="http://purl.org/dc/dcmitype/StillImage" />
|
||||
<dc:title></dc:title>
|
||||
</cc:Work>
|
||||
</rdf:RDF>
|
||||
</metadata>
|
||||
<g
|
||||
inkscape:label="Calque 1"
|
||||
inkscape:groupmode="layer"
|
||||
id="layer1">
|
||||
<path
|
||||
style="fill:none;stroke:#000000;stroke-width:0.14955132px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
||||
d="M 46.48521,56.223651 92.261253,82.793514"
|
||||
id="path12"
|
||||
inkscape:connector-curvature="0"
|
||||
sodipodi:nodetypes="cc" />
|
||||
<rect
|
||||
style="fill:#fffffb;fill-opacity:1;stroke:#000000;stroke-width:0.26458332;stroke-opacity:1"
|
||||
id="rect14"
|
||||
width="15.272366"
|
||||
height="7.3648462"
|
||||
x="78.49852"
|
||||
y="17.266371"
|
||||
transform="rotate(30.480809)" />
|
||||
<path
|
||||
style="fill:none;stroke:#ff0000;stroke-width:0.26499999;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:0.79499996, 0.79499996;stroke-dashoffset:0;stroke-opacity:1"
|
||||
d="M 64.030921,89.383007 75.582101,68.761439"
|
||||
id="path1105"
|
||||
inkscape:connector-curvature="0"
|
||||
sodipodi:nodetypes="cc" />
|
||||
<path
|
||||
style="fill:#e50000;fill-opacity:1;stroke:#f90000;stroke-width:0.26458332px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;marker-end:url(#marker1139)"
|
||||
d="M 64.030921,61.629166 V 89.383007"
|
||||
id="path1135"
|
||||
inkscape:connector-curvature="0" />
|
||||
<path
|
||||
style="fill:none;stroke:#0000f5;stroke-width:0.26499999;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1;marker-end:url(#marker1241)"
|
||||
d="M 64.030921,61.629166 80.621206,71.862427"
|
||||
id="path1237"
|
||||
inkscape:connector-curvature="0"
|
||||
sodipodi:nodetypes="cc" />
|
||||
<path
|
||||
sodipodi:nodetypes="cc"
|
||||
inkscape:connector-curvature="0"
|
||||
id="path1291"
|
||||
d="m 64.030921,61.629166 8.837815,-15.34989"
|
||||
style="fill:none;stroke:#0000f5;stroke-width:0.26499999;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1;marker-end:url(#marker1295)" />
|
||||
<path
|
||||
style="fill:none;stroke:#fb0000;stroke-width:0.26458332;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:0.79374995, 0.79374995;stroke-dashoffset:0;stroke-opacity:1"
|
||||
d="m 64.030921,61.629166 11.55118,7.132273"
|
||||
id="path2535"
|
||||
inkscape:connector-curvature="0"
|
||||
sodipodi:nodetypes="cc" />
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-style:normal;font-weight:normal;font-size:4.23333311px;line-height:1.25;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;stroke-width:0.26458332;"
|
||||
x="77.278114"
|
||||
y="67.076439"
|
||||
id="text2645"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan2643"
|
||||
x="77.278114"
|
||||
y="67.076439"
|
||||
style="font-size:4.23333311px;fill:#000000;stroke-width:0.26458332;fill-opacity:1;">axe x</tspan></text>
|
||||
<path
|
||||
sodipodi:nodetypes="cc"
|
||||
inkscape:connector-curvature="0"
|
||||
id="path2101"
|
||||
d="M 64.030921,61.629166 75.582101,41.627793"
|
||||
style="fill:#fe0000;fill-opacity:1;stroke:#fc0000;stroke-width:0.26458332px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;marker-end:url(#marker2105)" />
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-style:normal;font-weight:normal;font-size:4.23333311px;line-height:1.25;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;stroke-width:0.26458332"
|
||||
x="67.321213"
|
||||
y="84.119408"
|
||||
id="text5266"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan5264"
|
||||
x="67.321213"
|
||||
y="87.864914"
|
||||
style="stroke-width:0.26458332" /></text>
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-style:normal;font-weight:normal;font-size:4.23333311px;line-height:1.25;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;stroke-width:0.26458332"
|
||||
x="74.417236"
|
||||
y="47.365662"
|
||||
id="text5384"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan5382"
|
||||
x="74.417236"
|
||||
y="47.365662"
|
||||
style="stroke-width:0.26458332">R</tspan></text>
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-style:normal;font-weight:normal;font-size:4.23333311px;line-height:1.25;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;stroke-width:0.26458332"
|
||||
x="59.770321"
|
||||
y="80.025551"
|
||||
id="text5445"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan5443"
|
||||
x="59.770321"
|
||||
y="80.025551"
|
||||
style="stroke-width:0.26458332">P</tspan></text>
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-style:normal;font-weight:normal;font-size:4.23333311px;line-height:1.25;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;stroke-width:0.26458332"
|
||||
x="73.052612"
|
||||
y="64.104988"
|
||||
id="text5449"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan5447"
|
||||
x="73.052612"
|
||||
y="64.104988"
|
||||
style="stroke-width:0.26458332">Px</tspan></text>
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-style:normal;font-weight:normal;font-size:4.23333311px;line-height:1.25;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;stroke-width:0.26458332"
|
||||
x="71.142143"
|
||||
y="79.93457"
|
||||
id="text5453"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan5451"
|
||||
x="71.142143"
|
||||
y="79.93457"
|
||||
style="stroke-width:0.26458332">Py</tspan></text>
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-style:normal;font-weight:normal;font-size:4.23333311px;line-height:1.25;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;stroke-width:0.26458332"
|
||||
x="61.680786"
|
||||
y="51.550495"
|
||||
id="text5457"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan5455"
|
||||
x="61.680786"
|
||||
y="51.550495"
|
||||
style="stroke-width:0.26458332">axe y</tspan></text>
|
||||
</g>
|
||||
</svg>
|
After Width: | Height: | Size: 10 KiB |
257
Annexe-Exercices/Images/incline2.svg
Normal file
257
Annexe-Exercices/Images/incline2.svg
Normal file
@ -0,0 +1,257 @@
|
||||
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||||
<!-- Created with Inkscape (http://www.inkscape.org/) -->
|
||||
|
||||
<svg
|
||||
xmlns:dc="http://purl.org/dc/elements/1.1/"
|
||||
xmlns:cc="http://creativecommons.org/ns#"
|
||||
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
|
||||
xmlns:svg="http://www.w3.org/2000/svg"
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
|
||||
xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
|
||||
width="210mm"
|
||||
height="297mm"
|
||||
viewBox="0 0 210 297"
|
||||
version="1.1"
|
||||
id="svg8"
|
||||
inkscape:version="0.92.1 r15371"
|
||||
sodipodi:docname="incline.svg">
|
||||
<defs
|
||||
id="defs2">
|
||||
<marker
|
||||
inkscape:stockid="Arrow1Mstart"
|
||||
orient="auto"
|
||||
refY="0.0"
|
||||
refX="0.0"
|
||||
id="Arrow1Mstart"
|
||||
style="overflow:visible"
|
||||
inkscape:isstock="true">
|
||||
<path
|
||||
id="path829"
|
||||
d="M 0.0,0.0 L 5.0,-5.0 L -12.5,0.0 L 5.0,5.0 L 0.0,0.0 z "
|
||||
style="fill-rule:evenodd;stroke:#ff0000;stroke-width:1pt;stroke-opacity:1;fill:#ff0000;fill-opacity:1"
|
||||
transform="scale(0.4) translate(10,0)" />
|
||||
</marker>
|
||||
<marker
|
||||
inkscape:isstock="true"
|
||||
style="overflow:visible;"
|
||||
id="marker2105"
|
||||
refX="0.0"
|
||||
refY="0.0"
|
||||
orient="auto"
|
||||
inkscape:stockid="Arrow1Mend">
|
||||
<path
|
||||
transform="scale(0.4) rotate(180) translate(10,0)"
|
||||
style="fill-rule:evenodd;stroke:#fc0000;stroke-width:1pt;stroke-opacity:1;fill:#fe0000;fill-opacity:1"
|
||||
d="M 0.0,0.0 L 5.0,-5.0 L -12.5,0.0 L 5.0,5.0 L 0.0,0.0 z "
|
||||
id="path2103" />
|
||||
</marker>
|
||||
<marker
|
||||
inkscape:isstock="true"
|
||||
style="overflow:visible;"
|
||||
id="marker1295"
|
||||
refX="0.0"
|
||||
refY="0.0"
|
||||
orient="auto"
|
||||
inkscape:stockid="Arrow1Mend">
|
||||
<path
|
||||
transform="scale(0.4) rotate(180) translate(10,0)"
|
||||
style="fill-rule:evenodd;stroke:#0000f5;stroke-width:1pt;stroke-opacity:1;fill:#0000f5;fill-opacity:1"
|
||||
d="M 0.0,0.0 L 5.0,-5.0 L -12.5,0.0 L 5.0,5.0 L 0.0,0.0 z "
|
||||
id="path1293" />
|
||||
</marker>
|
||||
<marker
|
||||
inkscape:stockid="Arrow1Mend"
|
||||
orient="auto"
|
||||
refY="0.0"
|
||||
refX="0.0"
|
||||
id="marker1241"
|
||||
style="overflow:visible;"
|
||||
inkscape:isstock="true"
|
||||
inkscape:collect="always">
|
||||
<path
|
||||
id="path1239"
|
||||
d="M 0.0,0.0 L 5.0,-5.0 L -12.5,0.0 L 5.0,5.0 L 0.0,0.0 z "
|
||||
style="fill-rule:evenodd;stroke:#0000f5;stroke-width:1pt;stroke-opacity:1;fill:#0000f5;fill-opacity:1"
|
||||
transform="scale(0.4) rotate(180) translate(10,0)" />
|
||||
</marker>
|
||||
<marker
|
||||
inkscape:stockid="Arrow1Mend"
|
||||
orient="auto"
|
||||
refY="0.0"
|
||||
refX="0.0"
|
||||
id="marker1139"
|
||||
style="overflow:visible;"
|
||||
inkscape:isstock="true">
|
||||
<path
|
||||
id="path1137"
|
||||
d="M 0.0,0.0 L 5.0,-5.0 L -12.5,0.0 L 5.0,5.0 L 0.0,0.0 z "
|
||||
style="fill-rule:evenodd;stroke:#2d0000;stroke-width:1pt;stroke-opacity:1;fill:#ff0000;fill-opacity:1"
|
||||
transform="scale(0.4) rotate(180) translate(10,0)" />
|
||||
</marker>
|
||||
<marker
|
||||
inkscape:stockid="Arrow1Mend"
|
||||
orient="auto"
|
||||
refY="0.0"
|
||||
refX="0.0"
|
||||
id="Arrow1Mend"
|
||||
style="overflow:visible;"
|
||||
inkscape:isstock="true">
|
||||
<path
|
||||
id="path832"
|
||||
d="M 0.0,0.0 L 5.0,-5.0 L -12.5,0.0 L 5.0,5.0 L 0.0,0.0 z "
|
||||
style="fill-rule:evenodd;stroke:#000000;stroke-width:1pt;stroke-opacity:1;fill:#000000;fill-opacity:1"
|
||||
transform="scale(0.4) rotate(180) translate(10,0)" />
|
||||
</marker>
|
||||
</defs>
|
||||
<sodipodi:namedview
|
||||
id="base"
|
||||
pagecolor="#ffffff"
|
||||
bordercolor="#666666"
|
||||
borderopacity="1.0"
|
||||
inkscape:pageopacity="0.0"
|
||||
inkscape:pageshadow="2"
|
||||
inkscape:zoom="2.9083205"
|
||||
inkscape:cx="315.7597"
|
||||
inkscape:cy="874.80815"
|
||||
inkscape:document-units="mm"
|
||||
inkscape:current-layer="layer1"
|
||||
showgrid="false"
|
||||
inkscape:window-width="1400"
|
||||
inkscape:window-height="995"
|
||||
inkscape:window-x="0"
|
||||
inkscape:window-y="0"
|
||||
inkscape:window-maximized="1" />
|
||||
<metadata
|
||||
id="metadata5">
|
||||
<rdf:RDF>
|
||||
<cc:Work
|
||||
rdf:about="">
|
||||
<dc:format>image/svg+xml</dc:format>
|
||||
<dc:type
|
||||
rdf:resource="http://purl.org/dc/dcmitype/StillImage" />
|
||||
<dc:title></dc:title>
|
||||
</cc:Work>
|
||||
</rdf:RDF>
|
||||
</metadata>
|
||||
<g
|
||||
inkscape:label="Calque 1"
|
||||
inkscape:groupmode="layer"
|
||||
id="layer1">
|
||||
<path
|
||||
style="fill:none;stroke:#000000;stroke-width:0.14955132px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
||||
d="M 46.48521,56.223651 92.261253,82.793514"
|
||||
id="path12"
|
||||
inkscape:connector-curvature="0"
|
||||
sodipodi:nodetypes="cc" />
|
||||
<rect
|
||||
style="fill:#fffffb;fill-opacity:1;stroke:#000000;stroke-width:0.26458332;stroke-opacity:1"
|
||||
id="rect14"
|
||||
width="15.272366"
|
||||
height="7.3648462"
|
||||
x="78.49852"
|
||||
y="17.266371"
|
||||
transform="rotate(30.480809)" />
|
||||
<path
|
||||
style="fill:none;stroke:#ff0000;stroke-width:0.26499999;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:0.79499996, 0.79499996;stroke-dashoffset:0;stroke-opacity:1"
|
||||
d="M 64.030921,89.383007 75.582101,68.761439"
|
||||
id="path1105"
|
||||
inkscape:connector-curvature="0"
|
||||
sodipodi:nodetypes="cc" />
|
||||
<path
|
||||
style="fill:#ff0000;stroke:#2d0000;stroke-width:0.26458332px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;marker-end:url(#marker1139)"
|
||||
d="M 64.030921,61.629166 V 89.383007"
|
||||
id="path1135"
|
||||
inkscape:connector-curvature="0" />
|
||||
<path
|
||||
style="fill:none;stroke:#0000f5;stroke-width:0.26499999;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1;marker-end:url(#marker1241)"
|
||||
d="M 64.030921,61.629166 80.621206,71.862427"
|
||||
id="path1237"
|
||||
inkscape:connector-curvature="0"
|
||||
sodipodi:nodetypes="cc" />
|
||||
<path
|
||||
sodipodi:nodetypes="cc"
|
||||
inkscape:connector-curvature="0"
|
||||
id="path1291"
|
||||
d="m 64.030921,61.629166 8.837815,-15.34989"
|
||||
style="fill:none;stroke:#0000f5;stroke-width:0.26499999;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1;marker-end:url(#marker1295)" />
|
||||
<path
|
||||
style="fill:none;stroke:#fb0000;stroke-width:0.26458332;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:0.79374995, 0.79374995;stroke-dashoffset:0;stroke-opacity:1"
|
||||
d="m 64.030921,61.629166 11.55118,7.132273"
|
||||
id="path2535"
|
||||
inkscape:connector-curvature="0"
|
||||
sodipodi:nodetypes="cc" />
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-style:normal;font-weight:normal;font-size:4.23333311px;line-height:1.25;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;stroke-width:0.26458332"
|
||||
x="59.589619"
|
||||
y="47.781399"
|
||||
id="text2641"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan2639"
|
||||
x="59.589619"
|
||||
y="47.781399"
|
||||
style="fill:#0000ff;stroke-width:0.26458332">axe y</tspan></text>
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-style:normal;font-weight:normal;font-size:4.23333311px;line-height:1.25;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;stroke-width:0.26458332"
|
||||
x="78.915657"
|
||||
y="67.986191"
|
||||
id="text2645"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan2643"
|
||||
x="78.915657"
|
||||
y="67.986191"
|
||||
style="font-size:4.23333311px;fill:#0000ff;stroke-width:0.26458332">axe x</tspan></text>
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-style:normal;font-weight:normal;font-size:4.23333311px;line-height:1.25;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;stroke-width:0.26458332"
|
||||
x="70.578491"
|
||||
y="54.834816"
|
||||
id="text2649"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan2647"
|
||||
x="70.578491"
|
||||
y="54.834816"
|
||||
style="fill:#ff0000;stroke-width:0.26458332">\(\overrightarrow R\)</tspan></text>
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-style:normal;font-weight:normal;font-size:4.23333311px;line-height:1.25;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;stroke-width:0.26458332"
|
||||
x="57.673897"
|
||||
y="79.072227"
|
||||
id="text2653"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan2651"
|
||||
x="57.673897"
|
||||
y="79.072227"
|
||||
style="fill:#ff0000;stroke-width:0.26458332">\(\overrightarrow P\)</tspan></text>
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-style:normal;font-weight:normal;font-size:4.23333311px;line-height:1.25;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;stroke-width:0.26458332"
|
||||
x="69.457649"
|
||||
y="86.126976"
|
||||
id="text2657"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan2655"
|
||||
x="69.457649"
|
||||
y="86.126976"
|
||||
style="fill:#ff0000;stroke-width:0.26458332">\(\overrightarrow P_y\)</tspan></text>
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-style:normal;font-weight:normal;font-size:4.23333311px;line-height:1.25;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;stroke-width:0.26458332"
|
||||
x="73.721512"
|
||||
y="62.947086"
|
||||
id="text2661"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan2659"
|
||||
x="73.721512"
|
||||
y="62.947086"
|
||||
style="fill:#ff0000;stroke-width:0.26458332">\(\overrightarrow P_x\)</tspan></text>
|
||||
<path
|
||||
sodipodi:nodetypes="cc"
|
||||
inkscape:connector-curvature="0"
|
||||
id="path2101"
|
||||
d="M 64.030921,61.629166 75.582101,41.627793"
|
||||
style="fill:#fe0000;stroke:#fc0000;stroke-width:0.26458332px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;marker-end:url(#marker2105);fill-opacity:1" />
|
||||
</g>
|
||||
</svg>
|
After Width: | Height: | Size: 9.9 KiB |
575
Annexe-Exercices/Images/inclinePSTR.tex
Normal file
575
Annexe-Exercices/Images/inclinePSTR.tex
Normal file
@ -0,0 +1,575 @@
|
||||
%LaTeX with PSTricks extensions
|
||||
%%Creator: inkscape 0.92.1
|
||||
%%Please note this file requires PSTricks extensions
|
||||
\psset{xunit=.5pt,yunit=.5pt,runit=.5pt}
|
||||
\begin{pspicture}(793.7007874,1122.51968504)
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0}
|
||||
\pscustom[linewidth=0.56523332,linecolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(175.69213228,910.02084661)
|
||||
\lineto(348.70394835,809.59931717)
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{1 1 0.98431373}
|
||||
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(222.5823972,915.78521048)
|
||||
\lineto(272.32744686,886.50557562)
|
||||
\lineto(258.20782621,862.51684645)
|
||||
\lineto(208.46277654,891.79648131)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0}
|
||||
\pscustom[linewidth=0.99999995,linecolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(222.5823972,915.78521048)
|
||||
\lineto(272.32744686,886.50557562)
|
||||
\lineto(258.20782621,862.51684645)
|
||||
\lineto(208.46277654,891.79648131)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{1 0 0}
|
||||
\pscustom[linewidth=1.00157475,linecolor=curcolor,linestyle=dashed,dash=0.79499996 0.79499996]
|
||||
{
|
||||
\newpath
|
||||
\moveto(242.00663055,784.69414677)
|
||||
\lineto(285.6646337,862.63393134)
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0.89803922 0 0}
|
||||
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(242.00663055,889.5905537)
|
||||
\lineto(242.00663055,784.69414677)
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0.97647059 0 0}
|
||||
\pscustom[linewidth=0.99999995,linecolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(242.00663055,889.5905537)
|
||||
\lineto(242.00663055,784.69414677)
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0.89803922 0 0}
|
||||
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(242.00663055,788.69414656)
|
||||
\lineto(240.00663066,790.69414646)
|
||||
\lineto(242.00663055,783.69414682)
|
||||
\lineto(244.00663045,790.69414646)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0.97647059 0 0}
|
||||
\pscustom[linewidth=0.53333332,linecolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(242.00663055,788.69414656)
|
||||
\lineto(240.00663066,790.69414646)
|
||||
\lineto(242.00663055,783.69414682)
|
||||
\lineto(244.00663045,790.69414646)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0.96078432}
|
||||
\pscustom[linewidth=1.00157475,linecolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(242.00663055,889.5905537)
|
||||
\lineto(304.71006992,850.91366173)
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0.96078432}
|
||||
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(301.30026233,853.01690776)
|
||||
\lineto(298.54373552,852.36362698)
|
||||
\lineto(305.56252182,850.38785023)
|
||||
\lineto(300.64698155,855.77343457)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0.96078432}
|
||||
\pscustom[linewidth=0.53417322,linecolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(301.30026233,853.01690776)
|
||||
\lineto(298.54373552,852.36362698)
|
||||
\lineto(305.56252182,850.38785023)
|
||||
\lineto(300.64698155,855.77343457)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0.96078432}
|
||||
\pscustom[linewidth=1.00157475,linecolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(242.00663055,889.5905537)
|
||||
\lineto(275.40939591,947.60588598)
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0.96078432}
|
||||
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(273.41039523,944.13393726)
|
||||
\lineto(274.14686925,941.39846256)
|
||||
\lineto(275.90914607,948.47387317)
|
||||
\lineto(270.67492053,943.39746324)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0.96078432}
|
||||
\pscustom[linewidth=0.53417322,linecolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(273.41039523,944.13393726)
|
||||
\lineto(274.14686925,941.39846256)
|
||||
\lineto(275.90914607,948.47387317)
|
||||
\lineto(270.67492053,943.39746324)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0.98431373 0 0}
|
||||
\pscustom[linewidth=0.99999995,linecolor=curcolor,linestyle=dashed,dash=0.79374995 0.79374995]
|
||||
{
|
||||
\newpath
|
||||
\moveto(242.00663055,889.5905537)
|
||||
\lineto(285.6646337,862.63393134)
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0}
|
||||
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(297.55913749,873.40087291)
|
||||
\curveto(296.39767922,873.40087291)(295.59299176,873.26806041)(295.14507512,873.00243543)
|
||||
\curveto(294.69715848,872.73681044)(294.47320015,872.28368547)(294.47320015,871.6430605)
|
||||
\curveto(294.47320015,871.13264386)(294.63986681,870.72639388)(294.97320013,870.42431056)
|
||||
\curveto(295.31174178,870.12743558)(295.77007509,869.97899809)(296.34820006,869.97899809)
|
||||
\curveto(297.14507501,869.97899809)(297.78309581,870.26024807)(298.26226245,870.82274804)
|
||||
\curveto(298.74663743,871.39045635)(298.98882492,872.14306047)(298.98882492,873.08056042)
|
||||
\lineto(298.98882492,873.40087291)
|
||||
\closepath
|
||||
\moveto(300.42632484,873.99462288)
|
||||
\lineto(300.42632484,869.00243564)
|
||||
\lineto(298.98882492,869.00243564)
|
||||
\lineto(298.98882492,870.33056057)
|
||||
\curveto(298.66069993,869.7993106)(298.25184579,869.40608145)(297.76226248,869.15087313)
|
||||
\curveto(297.27267917,868.90087314)(296.67372087,868.77587315)(295.96538758,868.77587315)
|
||||
\curveto(295.06955429,868.77587315)(294.35601266,869.02587314)(293.82476269,869.52587311)
|
||||
\curveto(293.29872105,870.03108142)(293.03570023,870.70556055)(293.03570023,871.54931051)
|
||||
\curveto(293.03570023,872.53368545)(293.36382521,873.27587291)(294.02007518,873.77587289)
|
||||
\curveto(294.68153348,874.27587286)(295.66590842,874.52587285)(296.97320002,874.52587285)
|
||||
\lineto(298.98882492,874.52587285)
|
||||
\lineto(298.98882492,874.66649784)
|
||||
\curveto(298.98882492,875.32795614)(298.77007493,875.83837278)(298.33257495,876.19774776)
|
||||
\curveto(297.90028331,876.56233108)(297.29090834,876.74462273)(296.50445005,876.74462273)
|
||||
\curveto(296.00445007,876.74462273)(295.51747093,876.6847269)(295.04351262,876.56493524)
|
||||
\curveto(294.56955432,876.44514358)(294.11382517,876.26545609)(293.6763252,876.02587277)
|
||||
\lineto(293.6763252,877.3539977)
|
||||
\curveto(294.20236683,877.55712269)(294.71278347,877.70816435)(295.20757512,877.80712268)
|
||||
\curveto(295.70236676,877.91128934)(296.18413756,877.96337267)(296.65288754,877.96337267)
|
||||
\curveto(297.91851247,877.96337267)(298.86382492,877.63524769)(299.48882489,876.97899772)
|
||||
\curveto(300.11382486,876.32274775)(300.42632484,875.32795614)(300.42632484,873.99462288)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0}
|
||||
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(310.66851184,877.75243518)
|
||||
\lineto(307.5044495,873.4946229)
|
||||
\lineto(310.83257433,869.00243564)
|
||||
\lineto(309.13726192,869.00243564)
|
||||
\lineto(306.59038705,872.43993546)
|
||||
\lineto(304.04351219,869.00243564)
|
||||
\lineto(302.34819978,869.00243564)
|
||||
\lineto(305.7466371,873.5805604)
|
||||
\lineto(302.63726226,877.75243518)
|
||||
\lineto(304.33257467,877.75243518)
|
||||
\lineto(306.65288705,874.63524784)
|
||||
\lineto(308.97319943,877.75243518)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0}
|
||||
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(319.84819849,873.73681039)
|
||||
\lineto(319.84819849,873.03368543)
|
||||
\lineto(313.23882383,873.03368543)
|
||||
\curveto(313.30132383,872.04410215)(313.59819881,871.28889385)(314.12944879,870.76806055)
|
||||
\curveto(314.66590709,870.25243557)(315.41069872,869.99462309)(316.36382367,869.99462309)
|
||||
\curveto(316.91590697,869.99462309)(317.44976111,870.06233142)(317.96538608,870.19774808)
|
||||
\curveto(318.48621939,870.33316474)(319.00184436,870.53628973)(319.512261,870.80712304)
|
||||
\lineto(319.512261,869.44774812)
|
||||
\curveto(318.99663603,869.22899813)(318.46799022,869.06233147)(317.92632359,868.94774814)
|
||||
\curveto(317.38465695,868.83316481)(316.83517781,868.77587315)(316.27788617,868.77587315)
|
||||
\curveto(314.88205291,868.77587315)(313.77528214,869.18212313)(312.95757385,869.99462309)
|
||||
\curveto(312.14507389,870.80712304)(311.73882391,871.90608132)(311.73882391,873.29149791)
|
||||
\curveto(311.73882391,874.72378951)(312.12424056,875.85920611)(312.89507385,876.69774773)
|
||||
\curveto(313.67111548,877.54149769)(314.71538626,877.96337267)(316.02788619,877.96337267)
|
||||
\curveto(317.20496946,877.96337267)(318.13465691,877.58316435)(318.81694854,876.82274773)
|
||||
\curveto(319.5044485,876.06753943)(319.84819849,875.03889366)(319.84819849,873.73681039)
|
||||
\closepath
|
||||
\moveto(318.41069856,874.15868537)
|
||||
\curveto(318.4002819,874.94514366)(318.17892774,875.57274779)(317.7466361,876.04149777)
|
||||
\curveto(317.31955279,876.51024774)(316.75184448,876.74462273)(316.04351119,876.74462273)
|
||||
\curveto(315.24142789,876.74462273)(314.59819876,876.51806024)(314.11382379,876.06493527)
|
||||
\curveto(313.63465715,875.61181029)(313.35861549,874.97378949)(313.28569883,874.15087287)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0}
|
||||
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(334.57476184,877.75243518)
|
||||
\lineto(331.4106995,873.4946229)
|
||||
\lineto(334.73882433,869.00243564)
|
||||
\lineto(333.04351192,869.00243564)
|
||||
\lineto(330.49663705,872.43993546)
|
||||
\lineto(327.94976219,869.00243564)
|
||||
\lineto(326.25444978,869.00243564)
|
||||
\lineto(329.6528871,873.5805604)
|
||||
\lineto(326.54351226,877.75243518)
|
||||
\lineto(328.23882467,877.75243518)
|
||||
\lineto(330.55913705,874.63524784)
|
||||
\lineto(332.87944943,877.75243518)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0.99607843 0 0}
|
||||
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(242.00663055,889.5905537)
|
||||
\lineto(285.6646337,965.18629417)
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0.98823529 0 0}
|
||||
\pscustom[linewidth=0.99999995,linecolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(242.00663055,889.5905537)
|
||||
\lineto(285.6646337,965.18629417)
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0.99607843 0 0}
|
||||
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(283.66419456,961.72244638)
|
||||
\lineto(284.39589889,958.99030291)
|
||||
\lineto(286.16474349,966.05225612)
|
||||
\lineto(280.93205109,960.99074205)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0.98823529 0 0}
|
||||
\pscustom[linewidth=0.53333332,linecolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(283.66419456,961.72244638)
|
||||
\lineto(284.39589889,958.99030291)
|
||||
\lineto(286.16474349,966.05225612)
|
||||
\lineto(280.93205109,960.99074205)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0}
|
||||
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(288.3635577,948.9686113)
|
||||
\curveto(288.70209935,948.85402797)(289.03022433,948.60923632)(289.34793265,948.23423634)
|
||||
\curveto(289.6708493,947.85923636)(289.99376595,947.34361139)(290.31668259,946.68736142)
|
||||
\lineto(291.91824501,943.49986159)
|
||||
\lineto(290.2229326,943.49986159)
|
||||
\lineto(288.73074518,946.49204893)
|
||||
\curveto(288.34532853,947.27329889)(287.97032855,947.79152803)(287.60574524,948.04673635)
|
||||
\curveto(287.24637026,948.30194467)(286.75418278,948.42954883)(286.12918282,948.42954883)
|
||||
\lineto(284.41043291,948.42954883)
|
||||
\lineto(284.41043291,943.49986159)
|
||||
\lineto(282.83230799,943.49986159)
|
||||
\lineto(282.83230799,955.16392348)
|
||||
\lineto(286.3948078,955.16392348)
|
||||
\curveto(287.72814106,955.16392348)(288.72293268,954.88527766)(289.37918264,954.32798602)
|
||||
\curveto(290.03543261,953.77069438)(290.36355759,952.92954859)(290.36355759,951.80454865)
|
||||
\curveto(290.36355759,951.07017369)(290.1916826,950.46079872)(289.84793262,949.97642375)
|
||||
\curveto(289.50939097,949.49204877)(289.01459933,949.15611129)(288.3635577,948.9686113)
|
||||
\closepath
|
||||
\moveto(284.41043291,953.86704854)
|
||||
\lineto(284.41043291,949.72642376)
|
||||
\lineto(286.3948078,949.72642376)
|
||||
\curveto(287.15522443,949.72642376)(287.72814106,949.90090292)(288.11355771,950.24986123)
|
||||
\curveto(288.50418269,950.60402788)(288.69949518,951.12225702)(288.69949518,951.80454865)
|
||||
\curveto(288.69949518,952.48684028)(288.50418269,952.99986109)(288.11355771,953.34361107)
|
||||
\curveto(287.72814106,953.69256939)(287.15522443,953.86704854)(286.3948078,953.86704854)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0}
|
||||
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(229.05201236,830.42809716)
|
||||
\lineto(229.05201236,826.04528489)
|
||||
\lineto(231.03638726,826.04528489)
|
||||
\curveto(231.77076222,826.04528489)(232.33847052,826.23538904)(232.73951217,826.61559736)
|
||||
\curveto(233.14055381,826.99580567)(233.34107464,827.53747231)(233.34107464,828.24059727)
|
||||
\curveto(233.34107464,828.9385139)(233.14055381,829.47757637)(232.73951217,829.85778469)
|
||||
\curveto(232.33847052,830.237993)(231.77076222,830.42809716)(231.03638726,830.42809716)
|
||||
\closepath
|
||||
\moveto(227.47388744,831.72497209)
|
||||
\lineto(231.03638726,831.72497209)
|
||||
\curveto(232.34367885,831.72497209)(233.33065797,831.4280971)(233.9973246,830.83434714)
|
||||
\curveto(234.66919957,830.2458055)(235.00513705,829.38122221)(235.00513705,828.24059727)
|
||||
\curveto(235.00513705,827.08955567)(234.66919957,826.21976405)(233.9973246,825.63122241)
|
||||
\curveto(233.33065797,825.04268077)(232.34367885,824.74840996)(231.03638726,824.74840996)
|
||||
\lineto(229.05201236,824.74840996)
|
||||
\lineto(229.05201236,820.0609102)
|
||||
\lineto(227.47388744,820.0609102)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0}
|
||||
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(279.2527988,890.6003028)
|
||||
\lineto(279.2527988,886.21749053)
|
||||
\lineto(281.2371737,886.21749053)
|
||||
\curveto(281.97154866,886.21749053)(282.53925696,886.40759469)(282.94029861,886.787803)
|
||||
\curveto(283.34134025,887.16801132)(283.54186108,887.70967796)(283.54186108,888.41280292)
|
||||
\curveto(283.54186108,889.11071955)(283.34134025,889.64978202)(282.94029861,890.02999033)
|
||||
\curveto(282.53925696,890.41019865)(281.97154866,890.6003028)(281.2371737,890.6003028)
|
||||
\closepath
|
||||
\moveto(277.67467388,891.89717774)
|
||||
\lineto(281.2371737,891.89717774)
|
||||
\curveto(282.54446529,891.89717774)(283.53144441,891.60030275)(284.19811104,891.00655278)
|
||||
\curveto(284.86998601,890.41801115)(285.20592349,889.55342786)(285.20592349,888.41280292)
|
||||
\curveto(285.20592349,887.26176131)(284.86998601,886.39196969)(284.19811104,885.80342806)
|
||||
\curveto(283.53144441,885.21488642)(282.54446529,884.9206156)(281.2371737,884.9206156)
|
||||
\lineto(279.2527988,884.9206156)
|
||||
\lineto(279.2527988,880.23311585)
|
||||
\lineto(277.67467388,880.23311585)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0}
|
||||
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(294.54186082,888.98311539)
|
||||
\lineto(291.37779849,884.72530311)
|
||||
\lineto(294.70592332,880.23311585)
|
||||
\lineto(293.01061091,880.23311585)
|
||||
\lineto(290.46373604,883.67061567)
|
||||
\lineto(287.91686117,880.23311585)
|
||||
\lineto(286.22154876,880.23311585)
|
||||
\lineto(289.61998608,884.81124061)
|
||||
\lineto(286.51061125,888.98311539)
|
||||
\lineto(288.20592366,888.98311539)
|
||||
\lineto(290.52623604,885.86592805)
|
||||
\lineto(292.84654841,888.98311539)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0}
|
||||
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(272.03212836,830.77196058)
|
||||
\lineto(272.03212836,826.38914831)
|
||||
\lineto(274.01650325,826.38914831)
|
||||
\curveto(274.75087821,826.38914831)(275.31858652,826.57925246)(275.71962816,826.95946078)
|
||||
\curveto(276.12066981,827.33966909)(276.32119063,827.88133573)(276.32119063,828.58446069)
|
||||
\curveto(276.32119063,829.28237732)(276.12066981,829.82143979)(275.71962816,830.20164811)
|
||||
\curveto(275.31858652,830.58185642)(274.75087821,830.77196058)(274.01650325,830.77196058)
|
||||
\closepath
|
||||
\moveto(270.45400344,832.06883551)
|
||||
\lineto(274.01650325,832.06883551)
|
||||
\curveto(275.32379485,832.06883551)(276.31077396,831.77196052)(276.9774406,831.17821056)
|
||||
\curveto(277.64931556,830.58966892)(277.98525304,829.72508563)(277.98525304,828.58446069)
|
||||
\curveto(277.98525304,827.43341909)(277.64931556,826.56362746)(276.9774406,825.97508583)
|
||||
\curveto(276.31077396,825.38654419)(275.32379485,825.09227338)(274.01650325,825.09227338)
|
||||
\lineto(272.03212836,825.09227338)
|
||||
\lineto(272.03212836,820.40477362)
|
||||
\lineto(270.45400344,820.40477362)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0}
|
||||
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(283.68837807,819.59227366)
|
||||
\curveto(283.28212809,818.55060705)(282.88629478,817.87091959)(282.50087813,817.55321127)
|
||||
\curveto(282.11546149,817.23550296)(281.59983651,817.0766488)(280.95400321,817.0766488)
|
||||
\lineto(279.80556578,817.0766488)
|
||||
\lineto(279.80556578,818.27977373)
|
||||
\lineto(280.64931573,818.27977373)
|
||||
\curveto(281.04514904,818.27977373)(281.35244069,818.37352373)(281.57119068,818.56102372)
|
||||
\curveto(281.78994067,818.74852371)(282.03212816,819.19123202)(282.29775314,819.88914865)
|
||||
\lineto(282.55556563,820.54539861)
|
||||
\lineto(279.01650332,829.15477316)
|
||||
\lineto(280.53994074,829.15477316)
|
||||
\lineto(283.27431559,822.31102352)
|
||||
\lineto(286.00869045,829.15477316)
|
||||
\lineto(287.53212787,829.15477316)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0}
|
||||
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(238.60860576,932.08160521)
|
||||
\curveto(237.44714749,932.08160521)(236.64246003,931.94879272)(236.19454339,931.68316774)
|
||||
\curveto(235.74662675,931.41754275)(235.52266843,930.96441777)(235.52266843,930.32379281)
|
||||
\curveto(235.52266843,929.81337617)(235.68933508,929.40712619)(236.0226684,929.10504287)
|
||||
\curveto(236.36121005,928.80816789)(236.81954336,928.65973039)(237.39766833,928.65973039)
|
||||
\curveto(238.19454329,928.65973039)(238.83256409,928.94098038)(239.31173073,929.50348035)
|
||||
\curveto(239.7961057,930.07118865)(240.03829319,930.82379278)(240.03829319,931.76129273)
|
||||
\lineto(240.03829319,932.08160521)
|
||||
\closepath
|
||||
\moveto(241.47579311,932.67535518)
|
||||
\lineto(241.47579311,927.68316795)
|
||||
\lineto(240.03829319,927.68316795)
|
||||
\lineto(240.03829319,929.01129288)
|
||||
\curveto(239.71016821,928.4800429)(239.30131406,928.08681376)(238.81173075,927.83160544)
|
||||
\curveto(238.32214745,927.58160545)(237.72318914,927.45660546)(237.01485585,927.45660546)
|
||||
\curveto(236.11902256,927.45660546)(235.40548093,927.70660544)(234.87423096,928.20660542)
|
||||
\curveto(234.34818932,928.71181372)(234.0851685,929.38629286)(234.0851685,930.23004281)
|
||||
\curveto(234.0851685,931.21441776)(234.41329349,931.95660522)(235.06954345,932.45660519)
|
||||
\curveto(235.73100175,932.95660517)(236.7153767,933.20660516)(238.0226683,933.20660516)
|
||||
\lineto(240.03829319,933.20660516)
|
||||
\lineto(240.03829319,933.34723015)
|
||||
\curveto(240.03829319,934.00868845)(239.8195432,934.51910509)(239.38204322,934.87848007)
|
||||
\curveto(238.94975158,935.24306338)(238.34037661,935.42535504)(237.55391832,935.42535504)
|
||||
\curveto(237.05391835,935.42535504)(236.56693921,935.36545921)(236.0929809,935.24566755)
|
||||
\curveto(235.61902259,935.12587589)(235.16329345,934.9461884)(234.72579347,934.70660508)
|
||||
\lineto(234.72579347,936.03473001)
|
||||
\curveto(235.25183511,936.237855)(235.76225175,936.38889665)(236.25704339,936.48785498)
|
||||
\curveto(236.75183503,936.59202164)(237.23360584,936.64410497)(237.70235581,936.64410497)
|
||||
\curveto(238.96798075,936.64410497)(239.9132932,936.31597999)(240.53829316,935.65973003)
|
||||
\curveto(241.16329313,935.00348006)(241.47579311,934.00868845)(241.47579311,932.67535518)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0}
|
||||
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(251.71798011,936.43316749)
|
||||
\lineto(248.55391778,932.17535521)
|
||||
\lineto(251.8820426,927.68316795)
|
||||
\lineto(250.18673019,927.68316795)
|
||||
\lineto(247.63985533,931.12066776)
|
||||
\lineto(245.09298046,927.68316795)
|
||||
\lineto(243.39766805,927.68316795)
|
||||
\lineto(246.79610537,932.26129271)
|
||||
\lineto(243.68673053,936.43316749)
|
||||
\lineto(245.38204294,936.43316749)
|
||||
\lineto(247.70235532,933.31598015)
|
||||
\lineto(250.0226677,936.43316749)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0}
|
||||
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(260.89766676,932.4175427)
|
||||
\lineto(260.89766676,931.71441773)
|
||||
\lineto(254.28829211,931.71441773)
|
||||
\curveto(254.3507921,930.72483445)(254.64766709,929.96962616)(255.17891706,929.44879285)
|
||||
\curveto(255.71537536,928.93316788)(256.46016699,928.67535539)(257.41329194,928.67535539)
|
||||
\curveto(257.96537525,928.67535539)(258.49922938,928.74306372)(259.01485436,928.87848038)
|
||||
\curveto(259.53568766,929.01389704)(260.05131264,929.21702203)(260.56172928,929.48785535)
|
||||
\lineto(260.56172928,928.12848042)
|
||||
\curveto(260.0461043,927.90973043)(259.5174585,927.74306378)(258.97579186,927.62848045)
|
||||
\curveto(258.43412522,927.51389712)(257.88464608,927.45660546)(257.32735445,927.45660546)
|
||||
\curveto(255.93152119,927.45660546)(254.82475041,927.86285544)(254.00704212,928.67535539)
|
||||
\curveto(253.19454216,929.48785535)(252.78829219,930.58681363)(252.78829219,931.97223022)
|
||||
\curveto(252.78829219,933.40452181)(253.17370883,934.53993842)(253.94454212,935.37848004)
|
||||
\curveto(254.72058375,936.22223)(255.76485453,936.64410497)(257.07735446,936.64410497)
|
||||
\curveto(258.25443773,936.64410497)(259.18412518,936.26389666)(259.86641681,935.50348003)
|
||||
\curveto(260.55391678,934.74827174)(260.89766676,933.71962596)(260.89766676,932.4175427)
|
||||
\closepath
|
||||
\moveto(259.46016683,932.83941767)
|
||||
\curveto(259.44975017,933.62587597)(259.22839601,934.2534801)(258.79610437,934.72223008)
|
||||
\curveto(258.36902106,935.19098005)(257.80131275,935.42535504)(257.09297946,935.42535504)
|
||||
\curveto(256.29089617,935.42535504)(255.64766703,935.19879255)(255.16329206,934.74566757)
|
||||
\curveto(254.68412542,934.2925426)(254.40808377,933.6545218)(254.3351671,932.83160518)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0}
|
||||
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(271.9914178,926.87066799)
|
||||
\curveto(271.58516782,925.82900138)(271.18933451,925.14931391)(270.80391786,924.8316056)
|
||||
\curveto(270.41850122,924.51389728)(269.90287625,924.35504312)(269.25704295,924.35504312)
|
||||
\lineto(268.10860551,924.35504312)
|
||||
\lineto(268.10860551,925.55816806)
|
||||
\lineto(268.95235546,925.55816806)
|
||||
\curveto(269.34818877,925.55816806)(269.65548042,925.65191805)(269.87423041,925.83941804)
|
||||
\curveto(270.0929804,926.02691803)(270.33516789,926.46962634)(270.60079288,927.16754297)
|
||||
\lineto(270.85860536,927.82379294)
|
||||
\lineto(267.31954305,936.43316749)
|
||||
\lineto(268.84298047,936.43316749)
|
||||
\lineto(271.57735532,929.58941785)
|
||||
\lineto(274.31173018,936.43316749)
|
||||
\lineto(275.8351676,936.43316749)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
\end{pspicture}
|
575
Annexe-Exercices/Images/inclinePSTR.tex.bak
Normal file
575
Annexe-Exercices/Images/inclinePSTR.tex.bak
Normal file
@ -0,0 +1,575 @@
|
||||
%LaTeX with PSTricks extensions
|
||||
%%Creator: inkscape 0.92.1
|
||||
%%Please note this file requires PSTricks extensions
|
||||
\psset{xunit=.5pt,yunit=.5pt,runit=.5pt}
|
||||
\begin{pspicture}(793.7007874,1122.51968504)
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0}
|
||||
\pscustom[linewidth=0.56523332,linecolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(175.69213228,910.02084661)
|
||||
\lineto(348.70394835,809.59931717)
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{1 1 0.98431373}
|
||||
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(222.5823972,915.78521048)
|
||||
\lineto(272.32744686,886.50557562)
|
||||
\lineto(258.20782621,862.51684645)
|
||||
\lineto(208.46277654,891.79648131)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0}
|
||||
\pscustom[linewidth=0.99999995,linecolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(222.5823972,915.78521048)
|
||||
\lineto(272.32744686,886.50557562)
|
||||
\lineto(258.20782621,862.51684645)
|
||||
\lineto(208.46277654,891.79648131)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{1 0 0}
|
||||
\pscustom[linewidth=1.00157475,linecolor=curcolor,linestyle=dashed,dash=0.79499996 0.79499996]
|
||||
{
|
||||
\newpath
|
||||
\moveto(242.00663055,784.69414677)
|
||||
\lineto(285.6646337,862.63393134)
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0.89803922 0 0}
|
||||
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(242.00663055,889.5905537)
|
||||
\lineto(242.00663055,784.69414677)
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0.97647059 0 0}
|
||||
\pscustom[linewidth=0.99999995,linecolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(242.00663055,889.5905537)
|
||||
\lineto(242.00663055,784.69414677)
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0.89803922 0 0}
|
||||
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(242.00663055,788.69414656)
|
||||
\lineto(240.00663066,790.69414646)
|
||||
\lineto(242.00663055,783.69414682)
|
||||
\lineto(244.00663045,790.69414646)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0.97647059 0 0}
|
||||
\pscustom[linewidth=0.53333332,linecolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(242.00663055,788.69414656)
|
||||
\lineto(240.00663066,790.69414646)
|
||||
\lineto(242.00663055,783.69414682)
|
||||
\lineto(244.00663045,790.69414646)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0.96078432}
|
||||
\pscustom[linewidth=1.00157475,linecolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(242.00663055,889.5905537)
|
||||
\lineto(304.71006992,850.91366173)
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0.96078432}
|
||||
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(301.30026233,853.01690776)
|
||||
\lineto(298.54373552,852.36362698)
|
||||
\lineto(305.56252182,850.38785023)
|
||||
\lineto(300.64698155,855.77343457)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0.96078432}
|
||||
\pscustom[linewidth=0.53417322,linecolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(301.30026233,853.01690776)
|
||||
\lineto(298.54373552,852.36362698)
|
||||
\lineto(305.56252182,850.38785023)
|
||||
\lineto(300.64698155,855.77343457)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0.96078432}
|
||||
\pscustom[linewidth=1.00157475,linecolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(242.00663055,889.5905537)
|
||||
\lineto(275.40939591,947.60588598)
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0.96078432}
|
||||
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(273.41039523,944.13393726)
|
||||
\lineto(274.14686925,941.39846256)
|
||||
\lineto(275.90914607,948.47387317)
|
||||
\lineto(270.67492053,943.39746324)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0.96078432}
|
||||
\pscustom[linewidth=0.53417322,linecolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(273.41039523,944.13393726)
|
||||
\lineto(274.14686925,941.39846256)
|
||||
\lineto(275.90914607,948.47387317)
|
||||
\lineto(270.67492053,943.39746324)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0.98431373 0 0}
|
||||
\pscustom[linewidth=0.99999995,linecolor=curcolor,linestyle=dashed,dash=0.79374995 0.79374995]
|
||||
{
|
||||
\newpath
|
||||
\moveto(242.00663055,889.5905537)
|
||||
\lineto(285.6646337,862.63393134)
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0}
|
||||
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(297.55913749,873.40087291)
|
||||
\curveto(296.39767922,873.40087291)(295.59299176,873.26806041)(295.14507512,873.00243543)
|
||||
\curveto(294.69715848,872.73681044)(294.47320015,872.28368547)(294.47320015,871.6430605)
|
||||
\curveto(294.47320015,871.13264386)(294.63986681,870.72639388)(294.97320013,870.42431056)
|
||||
\curveto(295.31174178,870.12743558)(295.77007509,869.97899809)(296.34820006,869.97899809)
|
||||
\curveto(297.14507501,869.97899809)(297.78309581,870.26024807)(298.26226245,870.82274804)
|
||||
\curveto(298.74663743,871.39045635)(298.98882492,872.14306047)(298.98882492,873.08056042)
|
||||
\lineto(298.98882492,873.40087291)
|
||||
\closepath
|
||||
\moveto(300.42632484,873.99462288)
|
||||
\lineto(300.42632484,869.00243564)
|
||||
\lineto(298.98882492,869.00243564)
|
||||
\lineto(298.98882492,870.33056057)
|
||||
\curveto(298.66069993,869.7993106)(298.25184579,869.40608145)(297.76226248,869.15087313)
|
||||
\curveto(297.27267917,868.90087314)(296.67372087,868.77587315)(295.96538758,868.77587315)
|
||||
\curveto(295.06955429,868.77587315)(294.35601266,869.02587314)(293.82476269,869.52587311)
|
||||
\curveto(293.29872105,870.03108142)(293.03570023,870.70556055)(293.03570023,871.54931051)
|
||||
\curveto(293.03570023,872.53368545)(293.36382521,873.27587291)(294.02007518,873.77587289)
|
||||
\curveto(294.68153348,874.27587286)(295.66590842,874.52587285)(296.97320002,874.52587285)
|
||||
\lineto(298.98882492,874.52587285)
|
||||
\lineto(298.98882492,874.66649784)
|
||||
\curveto(298.98882492,875.32795614)(298.77007493,875.83837278)(298.33257495,876.19774776)
|
||||
\curveto(297.90028331,876.56233108)(297.29090834,876.74462273)(296.50445005,876.74462273)
|
||||
\curveto(296.00445007,876.74462273)(295.51747093,876.6847269)(295.04351262,876.56493524)
|
||||
\curveto(294.56955432,876.44514358)(294.11382517,876.26545609)(293.6763252,876.02587277)
|
||||
\lineto(293.6763252,877.3539977)
|
||||
\curveto(294.20236683,877.55712269)(294.71278347,877.70816435)(295.20757512,877.80712268)
|
||||
\curveto(295.70236676,877.91128934)(296.18413756,877.96337267)(296.65288754,877.96337267)
|
||||
\curveto(297.91851247,877.96337267)(298.86382492,877.63524769)(299.48882489,876.97899772)
|
||||
\curveto(300.11382486,876.32274775)(300.42632484,875.32795614)(300.42632484,873.99462288)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0}
|
||||
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(310.66851184,877.75243518)
|
||||
\lineto(307.5044495,873.4946229)
|
||||
\lineto(310.83257433,869.00243564)
|
||||
\lineto(309.13726192,869.00243564)
|
||||
\lineto(306.59038705,872.43993546)
|
||||
\lineto(304.04351219,869.00243564)
|
||||
\lineto(302.34819978,869.00243564)
|
||||
\lineto(305.7466371,873.5805604)
|
||||
\lineto(302.63726226,877.75243518)
|
||||
\lineto(304.33257467,877.75243518)
|
||||
\lineto(306.65288705,874.63524784)
|
||||
\lineto(308.97319943,877.75243518)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0}
|
||||
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(319.84819849,873.73681039)
|
||||
\lineto(319.84819849,873.03368543)
|
||||
\lineto(313.23882383,873.03368543)
|
||||
\curveto(313.30132383,872.04410215)(313.59819881,871.28889385)(314.12944879,870.76806055)
|
||||
\curveto(314.66590709,870.25243557)(315.41069872,869.99462309)(316.36382367,869.99462309)
|
||||
\curveto(316.91590697,869.99462309)(317.44976111,870.06233142)(317.96538608,870.19774808)
|
||||
\curveto(318.48621939,870.33316474)(319.00184436,870.53628973)(319.512261,870.80712304)
|
||||
\lineto(319.512261,869.44774812)
|
||||
\curveto(318.99663603,869.22899813)(318.46799022,869.06233147)(317.92632359,868.94774814)
|
||||
\curveto(317.38465695,868.83316481)(316.83517781,868.77587315)(316.27788617,868.77587315)
|
||||
\curveto(314.88205291,868.77587315)(313.77528214,869.18212313)(312.95757385,869.99462309)
|
||||
\curveto(312.14507389,870.80712304)(311.73882391,871.90608132)(311.73882391,873.29149791)
|
||||
\curveto(311.73882391,874.72378951)(312.12424056,875.85920611)(312.89507385,876.69774773)
|
||||
\curveto(313.67111548,877.54149769)(314.71538626,877.96337267)(316.02788619,877.96337267)
|
||||
\curveto(317.20496946,877.96337267)(318.13465691,877.58316435)(318.81694854,876.82274773)
|
||||
\curveto(319.5044485,876.06753943)(319.84819849,875.03889366)(319.84819849,873.73681039)
|
||||
\closepath
|
||||
\moveto(318.41069856,874.15868537)
|
||||
\curveto(318.4002819,874.94514366)(318.17892774,875.57274779)(317.7466361,876.04149777)
|
||||
\curveto(317.31955279,876.51024774)(316.75184448,876.74462273)(316.04351119,876.74462273)
|
||||
\curveto(315.24142789,876.74462273)(314.59819876,876.51806024)(314.11382379,876.06493527)
|
||||
\curveto(313.63465715,875.61181029)(313.35861549,874.97378949)(313.28569883,874.15087287)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0}
|
||||
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(334.57476184,877.75243518)
|
||||
\lineto(331.4106995,873.4946229)
|
||||
\lineto(334.73882433,869.00243564)
|
||||
\lineto(333.04351192,869.00243564)
|
||||
\lineto(330.49663705,872.43993546)
|
||||
\lineto(327.94976219,869.00243564)
|
||||
\lineto(326.25444978,869.00243564)
|
||||
\lineto(329.6528871,873.5805604)
|
||||
\lineto(326.54351226,877.75243518)
|
||||
\lineto(328.23882467,877.75243518)
|
||||
\lineto(330.55913705,874.63524784)
|
||||
\lineto(332.87944943,877.75243518)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0.99607843 0 0}
|
||||
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(242.00663055,889.5905537)
|
||||
\lineto(285.6646337,965.18629417)
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0.98823529 0 0}
|
||||
\pscustom[linewidth=0.99999995,linecolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(242.00663055,889.5905537)
|
||||
\lineto(285.6646337,965.18629417)
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0.99607843 0 0}
|
||||
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(283.66419456,961.72244638)
|
||||
\lineto(284.39589889,958.99030291)
|
||||
\lineto(286.16474349,966.05225612)
|
||||
\lineto(280.93205109,960.99074205)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0.98823529 0 0}
|
||||
\pscustom[linewidth=0.53333332,linecolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(283.66419456,961.72244638)
|
||||
\lineto(284.39589889,958.99030291)
|
||||
\lineto(286.16474349,966.05225612)
|
||||
\lineto(280.93205109,960.99074205)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0}
|
||||
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(288.3635577,948.9686113)
|
||||
\curveto(288.70209935,948.85402797)(289.03022433,948.60923632)(289.34793265,948.23423634)
|
||||
\curveto(289.6708493,947.85923636)(289.99376595,947.34361139)(290.31668259,946.68736142)
|
||||
\lineto(291.91824501,943.49986159)
|
||||
\lineto(290.2229326,943.49986159)
|
||||
\lineto(288.73074518,946.49204893)
|
||||
\curveto(288.34532853,947.27329889)(287.97032855,947.79152803)(287.60574524,948.04673635)
|
||||
\curveto(287.24637026,948.30194467)(286.75418278,948.42954883)(286.12918282,948.42954883)
|
||||
\lineto(284.41043291,948.42954883)
|
||||
\lineto(284.41043291,943.49986159)
|
||||
\lineto(282.83230799,943.49986159)
|
||||
\lineto(282.83230799,955.16392348)
|
||||
\lineto(286.3948078,955.16392348)
|
||||
\curveto(287.72814106,955.16392348)(288.72293268,954.88527766)(289.37918264,954.32798602)
|
||||
\curveto(290.03543261,953.77069438)(290.36355759,952.92954859)(290.36355759,951.80454865)
|
||||
\curveto(290.36355759,951.07017369)(290.1916826,950.46079872)(289.84793262,949.97642375)
|
||||
\curveto(289.50939097,949.49204877)(289.01459933,949.15611129)(288.3635577,948.9686113)
|
||||
\closepath
|
||||
\moveto(284.41043291,953.86704854)
|
||||
\lineto(284.41043291,949.72642376)
|
||||
\lineto(286.3948078,949.72642376)
|
||||
\curveto(287.15522443,949.72642376)(287.72814106,949.90090292)(288.11355771,950.24986123)
|
||||
\curveto(288.50418269,950.60402788)(288.69949518,951.12225702)(288.69949518,951.80454865)
|
||||
\curveto(288.69949518,952.48684028)(288.50418269,952.99986109)(288.11355771,953.34361107)
|
||||
\curveto(287.72814106,953.69256939)(287.15522443,953.86704854)(286.3948078,953.86704854)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0}
|
||||
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(229.05201236,830.42809716)
|
||||
\lineto(229.05201236,826.04528489)
|
||||
\lineto(231.03638726,826.04528489)
|
||||
\curveto(231.77076222,826.04528489)(232.33847052,826.23538904)(232.73951217,826.61559736)
|
||||
\curveto(233.14055381,826.99580567)(233.34107464,827.53747231)(233.34107464,828.24059727)
|
||||
\curveto(233.34107464,828.9385139)(233.14055381,829.47757637)(232.73951217,829.85778469)
|
||||
\curveto(232.33847052,830.237993)(231.77076222,830.42809716)(231.03638726,830.42809716)
|
||||
\closepath
|
||||
\moveto(227.47388744,831.72497209)
|
||||
\lineto(231.03638726,831.72497209)
|
||||
\curveto(232.34367885,831.72497209)(233.33065797,831.4280971)(233.9973246,830.83434714)
|
||||
\curveto(234.66919957,830.2458055)(235.00513705,829.38122221)(235.00513705,828.24059727)
|
||||
\curveto(235.00513705,827.08955567)(234.66919957,826.21976405)(233.9973246,825.63122241)
|
||||
\curveto(233.33065797,825.04268077)(232.34367885,824.74840996)(231.03638726,824.74840996)
|
||||
\lineto(229.05201236,824.74840996)
|
||||
\lineto(229.05201236,820.0609102)
|
||||
\lineto(227.47388744,820.0609102)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0}
|
||||
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(279.2527988,890.6003028)
|
||||
\lineto(279.2527988,886.21749053)
|
||||
\lineto(281.2371737,886.21749053)
|
||||
\curveto(281.97154866,886.21749053)(282.53925696,886.40759469)(282.94029861,886.787803)
|
||||
\curveto(283.34134025,887.16801132)(283.54186108,887.70967796)(283.54186108,888.41280292)
|
||||
\curveto(283.54186108,889.11071955)(283.34134025,889.64978202)(282.94029861,890.02999033)
|
||||
\curveto(282.53925696,890.41019865)(281.97154866,890.6003028)(281.2371737,890.6003028)
|
||||
\closepath
|
||||
\moveto(277.67467388,891.89717774)
|
||||
\lineto(281.2371737,891.89717774)
|
||||
\curveto(282.54446529,891.89717774)(283.53144441,891.60030275)(284.19811104,891.00655278)
|
||||
\curveto(284.86998601,890.41801115)(285.20592349,889.55342786)(285.20592349,888.41280292)
|
||||
\curveto(285.20592349,887.26176131)(284.86998601,886.39196969)(284.19811104,885.80342806)
|
||||
\curveto(283.53144441,885.21488642)(282.54446529,884.9206156)(281.2371737,884.9206156)
|
||||
\lineto(279.2527988,884.9206156)
|
||||
\lineto(279.2527988,880.23311585)
|
||||
\lineto(277.67467388,880.23311585)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0}
|
||||
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(294.54186082,888.98311539)
|
||||
\lineto(291.37779849,884.72530311)
|
||||
\lineto(294.70592332,880.23311585)
|
||||
\lineto(293.01061091,880.23311585)
|
||||
\lineto(290.46373604,883.67061567)
|
||||
\lineto(287.91686117,880.23311585)
|
||||
\lineto(286.22154876,880.23311585)
|
||||
\lineto(289.61998608,884.81124061)
|
||||
\lineto(286.51061125,888.98311539)
|
||||
\lineto(288.20592366,888.98311539)
|
||||
\lineto(290.52623604,885.86592805)
|
||||
\lineto(292.84654841,888.98311539)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0}
|
||||
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(272.03212836,830.77196058)
|
||||
\lineto(272.03212836,826.38914831)
|
||||
\lineto(274.01650325,826.38914831)
|
||||
\curveto(274.75087821,826.38914831)(275.31858652,826.57925246)(275.71962816,826.95946078)
|
||||
\curveto(276.12066981,827.33966909)(276.32119063,827.88133573)(276.32119063,828.58446069)
|
||||
\curveto(276.32119063,829.28237732)(276.12066981,829.82143979)(275.71962816,830.20164811)
|
||||
\curveto(275.31858652,830.58185642)(274.75087821,830.77196058)(274.01650325,830.77196058)
|
||||
\closepath
|
||||
\moveto(270.45400344,832.06883551)
|
||||
\lineto(274.01650325,832.06883551)
|
||||
\curveto(275.32379485,832.06883551)(276.31077396,831.77196052)(276.9774406,831.17821056)
|
||||
\curveto(277.64931556,830.58966892)(277.98525304,829.72508563)(277.98525304,828.58446069)
|
||||
\curveto(277.98525304,827.43341909)(277.64931556,826.56362746)(276.9774406,825.97508583)
|
||||
\curveto(276.31077396,825.38654419)(275.32379485,825.09227338)(274.01650325,825.09227338)
|
||||
\lineto(272.03212836,825.09227338)
|
||||
\lineto(272.03212836,820.40477362)
|
||||
\lineto(270.45400344,820.40477362)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0}
|
||||
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(283.68837807,819.59227366)
|
||||
\curveto(283.28212809,818.55060705)(282.88629478,817.87091959)(282.50087813,817.55321127)
|
||||
\curveto(282.11546149,817.23550296)(281.59983651,817.0766488)(280.95400321,817.0766488)
|
||||
\lineto(279.80556578,817.0766488)
|
||||
\lineto(279.80556578,818.27977373)
|
||||
\lineto(280.64931573,818.27977373)
|
||||
\curveto(281.04514904,818.27977373)(281.35244069,818.37352373)(281.57119068,818.56102372)
|
||||
\curveto(281.78994067,818.74852371)(282.03212816,819.19123202)(282.29775314,819.88914865)
|
||||
\lineto(282.55556563,820.54539861)
|
||||
\lineto(279.01650332,829.15477316)
|
||||
\lineto(280.53994074,829.15477316)
|
||||
\lineto(283.27431559,822.31102352)
|
||||
\lineto(286.00869045,829.15477316)
|
||||
\lineto(287.53212787,829.15477316)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0}
|
||||
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(238.60860576,932.08160521)
|
||||
\curveto(237.44714749,932.08160521)(236.64246003,931.94879272)(236.19454339,931.68316774)
|
||||
\curveto(235.74662675,931.41754275)(235.52266843,930.96441777)(235.52266843,930.32379281)
|
||||
\curveto(235.52266843,929.81337617)(235.68933508,929.40712619)(236.0226684,929.10504287)
|
||||
\curveto(236.36121005,928.80816789)(236.81954336,928.65973039)(237.39766833,928.65973039)
|
||||
\curveto(238.19454329,928.65973039)(238.83256409,928.94098038)(239.31173073,929.50348035)
|
||||
\curveto(239.7961057,930.07118865)(240.03829319,930.82379278)(240.03829319,931.76129273)
|
||||
\lineto(240.03829319,932.08160521)
|
||||
\closepath
|
||||
\moveto(241.47579311,932.67535518)
|
||||
\lineto(241.47579311,927.68316795)
|
||||
\lineto(240.03829319,927.68316795)
|
||||
\lineto(240.03829319,929.01129288)
|
||||
\curveto(239.71016821,928.4800429)(239.30131406,928.08681376)(238.81173075,927.83160544)
|
||||
\curveto(238.32214745,927.58160545)(237.72318914,927.45660546)(237.01485585,927.45660546)
|
||||
\curveto(236.11902256,927.45660546)(235.40548093,927.70660544)(234.87423096,928.20660542)
|
||||
\curveto(234.34818932,928.71181372)(234.0851685,929.38629286)(234.0851685,930.23004281)
|
||||
\curveto(234.0851685,931.21441776)(234.41329349,931.95660522)(235.06954345,932.45660519)
|
||||
\curveto(235.73100175,932.95660517)(236.7153767,933.20660516)(238.0226683,933.20660516)
|
||||
\lineto(240.03829319,933.20660516)
|
||||
\lineto(240.03829319,933.34723015)
|
||||
\curveto(240.03829319,934.00868845)(239.8195432,934.51910509)(239.38204322,934.87848007)
|
||||
\curveto(238.94975158,935.24306338)(238.34037661,935.42535504)(237.55391832,935.42535504)
|
||||
\curveto(237.05391835,935.42535504)(236.56693921,935.36545921)(236.0929809,935.24566755)
|
||||
\curveto(235.61902259,935.12587589)(235.16329345,934.9461884)(234.72579347,934.70660508)
|
||||
\lineto(234.72579347,936.03473001)
|
||||
\curveto(235.25183511,936.237855)(235.76225175,936.38889665)(236.25704339,936.48785498)
|
||||
\curveto(236.75183503,936.59202164)(237.23360584,936.64410497)(237.70235581,936.64410497)
|
||||
\curveto(238.96798075,936.64410497)(239.9132932,936.31597999)(240.53829316,935.65973003)
|
||||
\curveto(241.16329313,935.00348006)(241.47579311,934.00868845)(241.47579311,932.67535518)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0}
|
||||
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(251.71798011,936.43316749)
|
||||
\lineto(248.55391778,932.17535521)
|
||||
\lineto(251.8820426,927.68316795)
|
||||
\lineto(250.18673019,927.68316795)
|
||||
\lineto(247.63985533,931.12066776)
|
||||
\lineto(245.09298046,927.68316795)
|
||||
\lineto(243.39766805,927.68316795)
|
||||
\lineto(246.79610537,932.26129271)
|
||||
\lineto(243.68673053,936.43316749)
|
||||
\lineto(245.38204294,936.43316749)
|
||||
\lineto(247.70235532,933.31598015)
|
||||
\lineto(250.0226677,936.43316749)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0}
|
||||
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(260.89766676,932.4175427)
|
||||
\lineto(260.89766676,931.71441773)
|
||||
\lineto(254.28829211,931.71441773)
|
||||
\curveto(254.3507921,930.72483445)(254.64766709,929.96962616)(255.17891706,929.44879285)
|
||||
\curveto(255.71537536,928.93316788)(256.46016699,928.67535539)(257.41329194,928.67535539)
|
||||
\curveto(257.96537525,928.67535539)(258.49922938,928.74306372)(259.01485436,928.87848038)
|
||||
\curveto(259.53568766,929.01389704)(260.05131264,929.21702203)(260.56172928,929.48785535)
|
||||
\lineto(260.56172928,928.12848042)
|
||||
\curveto(260.0461043,927.90973043)(259.5174585,927.74306378)(258.97579186,927.62848045)
|
||||
\curveto(258.43412522,927.51389712)(257.88464608,927.45660546)(257.32735445,927.45660546)
|
||||
\curveto(255.93152119,927.45660546)(254.82475041,927.86285544)(254.00704212,928.67535539)
|
||||
\curveto(253.19454216,929.48785535)(252.78829219,930.58681363)(252.78829219,931.97223022)
|
||||
\curveto(252.78829219,933.40452181)(253.17370883,934.53993842)(253.94454212,935.37848004)
|
||||
\curveto(254.72058375,936.22223)(255.76485453,936.64410497)(257.07735446,936.64410497)
|
||||
\curveto(258.25443773,936.64410497)(259.18412518,936.26389666)(259.86641681,935.50348003)
|
||||
\curveto(260.55391678,934.74827174)(260.89766676,933.71962596)(260.89766676,932.4175427)
|
||||
\closepath
|
||||
\moveto(259.46016683,932.83941767)
|
||||
\curveto(259.44975017,933.62587597)(259.22839601,934.2534801)(258.79610437,934.72223008)
|
||||
\curveto(258.36902106,935.19098005)(257.80131275,935.42535504)(257.09297946,935.42535504)
|
||||
\curveto(256.29089617,935.42535504)(255.64766703,935.19879255)(255.16329206,934.74566757)
|
||||
\curveto(254.68412542,934.2925426)(254.40808377,933.6545218)(254.3351671,932.83160518)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0}
|
||||
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(271.9914178,926.87066799)
|
||||
\curveto(271.58516782,925.82900138)(271.18933451,925.14931391)(270.80391786,924.8316056)
|
||||
\curveto(270.41850122,924.51389728)(269.90287625,924.35504312)(269.25704295,924.35504312)
|
||||
\lineto(268.10860551,924.35504312)
|
||||
\lineto(268.10860551,925.55816806)
|
||||
\lineto(268.95235546,925.55816806)
|
||||
\curveto(269.34818877,925.55816806)(269.65548042,925.65191805)(269.87423041,925.83941804)
|
||||
\curveto(270.0929804,926.02691803)(270.33516789,926.46962634)(270.60079288,927.16754297)
|
||||
\lineto(270.85860536,927.82379294)
|
||||
\lineto(267.31954305,936.43316749)
|
||||
\lineto(268.84298047,936.43316749)
|
||||
\lineto(271.57735532,929.58941785)
|
||||
\lineto(274.31173018,936.43316749)
|
||||
\lineto(275.8351676,936.43316749)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
\end{pspicture}
|
121
Annexe-Exercices/Images/pendante.eps
Normal file
121
Annexe-Exercices/Images/pendante.eps
Normal file
@ -0,0 +1,121 @@
|
||||
%!PS-Adobe-3.0 EPSF-3.0
|
||||
%%Creator: cairo 1.14.8 (http://cairographics.org)
|
||||
%%CreationDate: Fri Dec 21 20:52:36 2018
|
||||
%%Pages: 1
|
||||
%%DocumentData: Clean7Bit
|
||||
%%LanguageLevel: 2
|
||||
%%BoundingBox: 0 -1 214 89
|
||||
%%EndComments
|
||||
%%BeginProlog
|
||||
save
|
||||
50 dict begin
|
||||
/q { gsave } bind def
|
||||
/Q { grestore } bind def
|
||||
/cm { 6 array astore concat } bind def
|
||||
/w { setlinewidth } bind def
|
||||
/J { setlinecap } bind def
|
||||
/j { setlinejoin } bind def
|
||||
/M { setmiterlimit } bind def
|
||||
/d { setdash } bind def
|
||||
/m { moveto } bind def
|
||||
/l { lineto } bind def
|
||||
/c { curveto } bind def
|
||||
/h { closepath } bind def
|
||||
/re { exch dup neg 3 1 roll 5 3 roll moveto 0 rlineto
|
||||
0 exch rlineto 0 rlineto closepath } bind def
|
||||
/S { stroke } bind def
|
||||
/f { fill } bind def
|
||||
/f* { eofill } bind def
|
||||
/n { newpath } bind def
|
||||
/W { clip } bind def
|
||||
/W* { eoclip } bind def
|
||||
/BT { } bind def
|
||||
/ET { } bind def
|
||||
/pdfmark where { pop globaldict /?pdfmark /exec load put }
|
||||
{ globaldict begin /?pdfmark /pop load def /pdfmark
|
||||
/cleartomark load def end } ifelse
|
||||
/BDC { mark 3 1 roll /BDC pdfmark } bind def
|
||||
/EMC { mark /EMC pdfmark } bind def
|
||||
/cairo_store_point { /cairo_point_y exch def /cairo_point_x exch def } def
|
||||
/Tj { show currentpoint cairo_store_point } bind def
|
||||
/TJ {
|
||||
{
|
||||
dup
|
||||
type /stringtype eq
|
||||
{ show } { -0.001 mul 0 cairo_font_matrix dtransform rmoveto } ifelse
|
||||
} forall
|
||||
currentpoint cairo_store_point
|
||||
} bind def
|
||||
/cairo_selectfont { cairo_font_matrix aload pop pop pop 0 0 6 array astore
|
||||
cairo_font exch selectfont cairo_point_x cairo_point_y moveto } bind def
|
||||
/Tf { pop /cairo_font exch def /cairo_font_matrix where
|
||||
{ pop cairo_selectfont } if } bind def
|
||||
/Td { matrix translate cairo_font_matrix matrix concatmatrix dup
|
||||
/cairo_font_matrix exch def dup 4 get exch 5 get cairo_store_point
|
||||
/cairo_font where { pop cairo_selectfont } if } bind def
|
||||
/Tm { 2 copy 8 2 roll 6 array astore /cairo_font_matrix exch def
|
||||
cairo_store_point /cairo_font where { pop cairo_selectfont } if } bind def
|
||||
/g { setgray } bind def
|
||||
/rg { setrgbcolor } bind def
|
||||
/d1 { setcachedevice } bind def
|
||||
%%EndProlog
|
||||
%%BeginSetup
|
||||
%%EndSetup
|
||||
%%Page: 1 1
|
||||
%%BeginPageSetup
|
||||
%%PageBoundingBox: 0 -1 214 89
|
||||
%%EndPageSetup
|
||||
q 0 -1 214 90 rectclip q
|
||||
0 g
|
||||
0.75 w
|
||||
0 J
|
||||
0 j
|
||||
[] 0.0 d
|
||||
4 M q 1 0 0 1 0 88.537849 cm
|
||||
207.348 -55.07 m 207.617 -13.98 l 202.312 -8.945 l 66.668 -9.219 l S Q
|
||||
q 1 0 0 1 0 88.537849 cm
|
||||
0 -19.152 m 197.551 -19.152 l 197.551 -88.539 l S Q
|
||||
q 1 0 0 -1 0 88.537849 cm
|
||||
21.77 0.375 44.898 18.504 re S Q
|
||||
1 1 0.984314 rg
|
||||
207.617 74.557 m 207.617 71.854 205.426 69.659 202.719 69.659 c 200.016
|
||||
69.659 197.82 71.854 197.82 74.557 c 197.82 77.264 200.016 79.456 202.719
|
||||
79.456 c 205.426 79.456 207.617 77.264 207.617 74.557 c h
|
||||
207.617 74.557 m f
|
||||
0 g
|
||||
q 1 0 0 -1 0 88.537849 cm
|
||||
207.617 13.98 m 207.617 16.684 205.426 18.879 202.719 18.879 c 200.016
|
||||
18.879 197.82 16.684 197.82 13.98 c 197.82 11.273 200.016 9.082 202.719
|
||||
9.082 c 205.426 9.082 207.617 11.273 207.617 13.98 c h
|
||||
207.617 13.98 m S Q
|
||||
q 1 0 0 1 0 88.537849 cm
|
||||
202.719 -13.98 m 192.652 -24.32 l S Q
|
||||
1 1 0.984314 rg
|
||||
201.359 33.198 11.699 -8.98 re f
|
||||
0 g
|
||||
q 1 0 0 -1 0 88.537849 cm
|
||||
201.359 55.34 11.699 8.98 re S Q
|
||||
q 1 0 0 1 0 88.537849 cm
|
||||
44.625 -28.129 m 172.789 -28.129 l S Q
|
||||
48.551 62.221 m 43.633 60.417 l 48.551 58.608 l 47.762 59.675 47.77 61.136
|
||||
48.551 62.221 c h
|
||||
48.551 62.221 m f*
|
||||
0.28125 w
|
||||
1 j
|
||||
q 1 0 0 1 0 88.537849 cm
|
||||
48.551 -26.316 m 43.633 -28.121 l 48.551 -29.93 l 47.762 -28.863 47.77
|
||||
-27.402 48.551 -26.316 c h
|
||||
48.551 -26.316 m S Q
|
||||
169.789 60.409 m 168.289 61.909 l 173.539 60.409 l 168.289 58.909 l h
|
||||
169.789 60.409 m f*
|
||||
0.4 w
|
||||
0 j
|
||||
q -1 0 0 -1 0 88.537849 cm
|
||||
-169.789 28.129 m -168.289 26.629 l -173.539 28.129 l -168.289 29.629 l
|
||||
h
|
||||
-169.789 28.129 m S Q
|
||||
Q Q
|
||||
showpage
|
||||
%%Trailer
|
||||
end restore
|
||||
%%EOF
|
57
Annexe-Exercices/Images/pendante.eps_tex
Normal file
57
Annexe-Exercices/Images/pendante.eps_tex
Normal file
@ -0,0 +1,57 @@
|
||||
%% Creator: Inkscape inkscape 0.92.1, www.inkscape.org
|
||||
%% PDF/EPS/PS + LaTeX output extension by Johan Engelen, 2010
|
||||
%% Accompanies image file 'pendante.eps' (pdf, eps, ps)
|
||||
%%
|
||||
%% To include the image in your LaTeX document, write
|
||||
%% \input{<filename>.pdf_tex}
|
||||
%% instead of
|
||||
%% \includegraphics{<filename>.pdf}
|
||||
%% To scale the image, write
|
||||
%% \def\svgwidth{<desired width>}
|
||||
%% \input{<filename>.pdf_tex}
|
||||
%% instead of
|
||||
%% \includegraphics[width=<desired width>]{<filename>.pdf}
|
||||
%%
|
||||
%% Images with a different path to the parent latex file can
|
||||
%% be accessed with the `import' package (which may need to be
|
||||
%% installed) using
|
||||
%% \usepackage{import}
|
||||
%% in the preamble, and then including the image with
|
||||
%% \import{<path to file>}{<filename>.pdf_tex}
|
||||
%% Alternatively, one can specify
|
||||
%% \graphicspath{{<path to file>/}}
|
||||
%%
|
||||
%% For more information, please see info/svg-inkscape on CTAN:
|
||||
%% http://tug.ctan.org/tex-archive/info/svg-inkscape
|
||||
%%
|
||||
\begingroup%
|
||||
\makeatletter%
|
||||
\providecommand\color[2][]{%
|
||||
\errmessage{(Inkscape) Color is used for the text in Inkscape, but the package 'color.sty' is not loaded}%
|
||||
\renewcommand\color[2][]{}%
|
||||
}%
|
||||
\providecommand\transparent[1]{%
|
||||
\errmessage{(Inkscape) Transparency is used (non-zero) for the text in Inkscape, but the package 'transparent.sty' is not loaded}%
|
||||
\renewcommand\transparent[1]{}%
|
||||
}%
|
||||
\providecommand\rotatebox[2]{#2}%
|
||||
\ifx\svgwidth\undefined%
|
||||
\setlength{\unitlength}{213.4352782bp}%
|
||||
\ifx\svgscale\undefined%
|
||||
\relax%
|
||||
\else%
|
||||
\setlength{\unitlength}{\unitlength * \real{\svgscale}}%
|
||||
\fi%
|
||||
\else%
|
||||
\setlength{\unitlength}{\svgwidth}%
|
||||
\fi%
|
||||
\global\let\svgwidth\undefined%
|
||||
\global\let\svgscale\undefined%
|
||||
\makeatother%
|
||||
\begin{picture}(1,0.41482294)%
|
||||
\put(0,0){\includegraphics[width=\unitlength]{pendante.eps}}%
|
||||
\put(0.18290229,0.34922614){\color[rgb]{0,0,0}\makebox(0,0)[lb]{\smash{M}}}%
|
||||
\put(0.94328398,0.06246981){\color[rgb]{0,0,0}\makebox(0,0)[lb]{\smash{m}}}%
|
||||
\put(0.49328463,0.2103578){\color[rgb]{0,0,0}\makebox(0,0)[lb]{\smash{d}}}%
|
||||
\end{picture}%
|
||||
\endgroup%
|
141
Annexe-Exercices/Images/pendante.svg
Normal file
141
Annexe-Exercices/Images/pendante.svg
Normal file
@ -0,0 +1,141 @@
|
||||
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||||
<!-- Created with Inkscape (http://www.inkscape.org/) -->
|
||||
|
||||
<svg
|
||||
xmlns:dc="http://purl.org/dc/elements/1.1/"
|
||||
xmlns:cc="http://creativecommons.org/ns#"
|
||||
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
|
||||
xmlns:svg="http://www.w3.org/2000/svg"
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
|
||||
xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
|
||||
version="1.1"
|
||||
id="svg29"
|
||||
xml:space="preserve"
|
||||
width="793.33331"
|
||||
height="1122.6667"
|
||||
viewBox="0 0 793.33331 1122.6667"
|
||||
sodipodi:docname="pendante.svg"
|
||||
inkscape:version="0.92.1 r15371"><metadata
|
||||
id="metadata35"><rdf:RDF><cc:Work
|
||||
rdf:about=""><dc:format>image/svg+xml</dc:format><dc:type
|
||||
rdf:resource="http://purl.org/dc/dcmitype/StillImage" /><dc:title></dc:title></cc:Work></rdf:RDF></metadata><defs
|
||||
id="defs33"><marker
|
||||
inkscape:stockid="Arrow1Mend"
|
||||
orient="auto"
|
||||
refY="0.0"
|
||||
refX="0.0"
|
||||
id="Arrow1Mend"
|
||||
style="overflow:visible;"
|
||||
inkscape:isstock="true"><path
|
||||
id="path4608"
|
||||
d="M 0.0,0.0 L 5.0,-5.0 L -12.5,0.0 L 5.0,5.0 L 0.0,0.0 z "
|
||||
style="fill-rule:evenodd;stroke:#000000;stroke-width:1pt;stroke-opacity:1;fill:#000000;fill-opacity:1"
|
||||
transform="scale(0.4) rotate(180) translate(10,0)" /></marker><marker
|
||||
inkscape:stockid="Arrow2Mstart"
|
||||
orient="auto"
|
||||
refY="0.0"
|
||||
refX="0.0"
|
||||
id="Arrow2Mstart"
|
||||
style="overflow:visible"
|
||||
inkscape:isstock="true"><path
|
||||
id="path4623"
|
||||
style="fill-rule:evenodd;stroke-width:0.625;stroke-linejoin:round;stroke:#000000;stroke-opacity:1;fill:#000000;fill-opacity:1"
|
||||
d="M 8.7185878,4.0337352 L -2.2072895,0.016013256 L 8.7185884,-4.0017078 C 6.9730900,-1.6296469 6.9831476,1.6157441 8.7185878,4.0337352 z "
|
||||
transform="scale(0.6) translate(0,0)" /></marker></defs><sodipodi:namedview
|
||||
pagecolor="#ffffff"
|
||||
bordercolor="#666666"
|
||||
borderopacity="1"
|
||||
objecttolerance="10"
|
||||
gridtolerance="10"
|
||||
guidetolerance="10"
|
||||
inkscape:pageopacity="0"
|
||||
inkscape:pageshadow="2"
|
||||
inkscape:window-width="1400"
|
||||
inkscape:window-height="995"
|
||||
id="namedview31"
|
||||
showgrid="false"
|
||||
inkscape:zoom="2.7562622"
|
||||
inkscape:cx="153.93039"
|
||||
inkscape:cy="978.47162"
|
||||
inkscape:window-x="0"
|
||||
inkscape:window-y="0"
|
||||
inkscape:window-maximized="1"
|
||||
inkscape:current-layer="g37" /><g
|
||||
id="g37"
|
||||
inkscape:groupmode="layer"
|
||||
inkscape:label="ink_ext_XXXXXX"
|
||||
transform="matrix(1.3333333,0,0,-1.3333333,0,1122.6667)"><path
|
||||
style="fill:none;stroke:#000000;stroke-width:0.75px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
||||
d="m 213.3324,730.609 0.27211,41.08826 -5.30611,5.03399 -135.645658,-0.27211"
|
||||
id="path4585"
|
||||
inkscape:connector-curvature="0"
|
||||
sodipodi:nodetypes="cccc" /><path
|
||||
style="fill:none;stroke:#000000;stroke-width:0.75px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
||||
d="M 5.9863683,766.52721 H 203.53652 v -69.38745"
|
||||
id="path4577"
|
||||
inkscape:connector-curvature="0" /><rect
|
||||
style="fill:none;stroke:#000000;stroke-width:0.75;stroke-opacity:1"
|
||||
id="rect4579"
|
||||
width="44.897762"
|
||||
height="18.503321"
|
||||
x="27.754978"
|
||||
y="-785.30261"
|
||||
transform="scale(1,-1)" /><circle
|
||||
style="fill:#fffffb;stroke:#000000;stroke-width:0.75;stroke-opacity:1;fill-opacity:1"
|
||||
id="path4581"
|
||||
cx="208.70656"
|
||||
cy="-771.69727"
|
||||
r="4.8979378"
|
||||
transform="scale(1,-1)" /><path
|
||||
style="fill:none;stroke:#000000;stroke-width:0.75px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
|
||||
d="M 208.70656,771.69726 198.63859,761.35717"
|
||||
id="path4583"
|
||||
inkscape:connector-curvature="0" /><rect
|
||||
style="fill:#fffffb;fill-opacity:1;stroke:#000000;stroke-width:0.75;stroke-opacity:1"
|
||||
id="rect4587"
|
||||
width="11.700628"
|
||||
height="8.9795523"
|
||||
x="207.34602"
|
||||
y="-730.33685"
|
||||
transform="scale(1,-1)" /><text
|
||||
xml:space="preserve"
|
||||
style="font-style:normal;font-weight:normal;font-size:12px;line-height:1.25;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;stroke-width:0.75"
|
||||
x="45.02417"
|
||||
y="-771.67694"
|
||||
id="text4591"
|
||||
transform="scale(1,-1)"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan4589"
|
||||
x="45.02417"
|
||||
y="-771.67694"
|
||||
style="stroke-width:0.75">M</tspan></text>
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-style:normal;font-weight:normal;font-size:12px;line-height:1.25;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;stroke-width:0.75"
|
||||
x="207.31645"
|
||||
y="-710.47302"
|
||||
id="text4595"
|
||||
transform="scale(1,-1)"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan4593"
|
||||
x="207.31645"
|
||||
y="-710.47302"
|
||||
style="stroke-width:0.75">m</tspan></text>
|
||||
<path
|
||||
style="fill:none;stroke:#000000;stroke-width:0.75px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;marker-start:url(#Arrow2Mstart);marker-end:url(#Arrow1Mend)"
|
||||
d="M 50.612023,757.54766 H 178.77472"
|
||||
id="path4597"
|
||||
inkscape:connector-curvature="0" /><text
|
||||
xml:space="preserve"
|
||||
style="font-style:normal;font-weight:normal;font-size:12px;line-height:1.25;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;stroke-width:0.75"
|
||||
x="111.27071"
|
||||
y="-742.03754"
|
||||
id="text4915"
|
||||
transform="scale(1,-1)"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan4913"
|
||||
x="111.27071"
|
||||
y="-742.03754"
|
||||
style="stroke-width:0.75">d</tspan></text>
|
||||
</g></svg>
|
After Width: | Height: | Size: 5.8 KiB |
@ -1,16 +1,16 @@
|
||||
\relax
|
||||
\@writefile{toc}{\contentsline {chapter}{\numberline {M}Ordre de grandeur, erreur et incertitudes}{221}}
|
||||
\@writefile{toc}{\contentsline {chapter}{\numberline {M}Ordre de grandeur, erreur et incertitudes}{223}}
|
||||
\@writefile{lof}{\addvspace {10\p@ }}
|
||||
\@writefile{lot}{\addvspace {10\p@ }}
|
||||
\@writefile{toc}{\contentsline {section}{\numberline {M.1}Ordre de grandeur}{221}}
|
||||
\@writefile{toc}{\contentsline {section}{\numberline {M.2}\IeC {\'E}cart et erreur}{221}}
|
||||
\@writefile{lot}{\contentsline {table}{\numberline {M.1}{\ignorespaces La longueur des baguettes de pain\relax }}{221}}
|
||||
\newlabel{baguettepain}{{M.1}{221}}
|
||||
\@writefile{lot}{\contentsline {table}{\numberline {M.2}{\ignorespaces La longueur d'autres baguettes de pain\relax }}{222}}
|
||||
\newlabel{baguettepain2}{{M.2}{222}}
|
||||
\@writefile{toc}{\contentsline {section}{\numberline {M.3}Incertitude}{222}}
|
||||
\@writefile{toc}{\contentsline {section}{\numberline {M.1}Ordre de grandeur}{223}}
|
||||
\@writefile{toc}{\contentsline {section}{\numberline {M.2}\IeC {\'E}cart et erreur}{223}}
|
||||
\@writefile{lot}{\contentsline {table}{\numberline {M.1}{\ignorespaces La longueur des baguettes de pain\relax }}{223}}
|
||||
\newlabel{baguettepain}{{M.1}{223}}
|
||||
\@writefile{lot}{\contentsline {table}{\numberline {M.2}{\ignorespaces La longueur d'autres baguettes de pain\relax }}{224}}
|
||||
\newlabel{baguettepain2}{{M.2}{224}}
|
||||
\@writefile{toc}{\contentsline {section}{\numberline {M.3}Incertitude}{224}}
|
||||
\@setckpt{Annexe-Incertitudes/Annexe-Incertitudes}{
|
||||
\setcounter{page}{223}
|
||||
\setcounter{page}{225}
|
||||
\setcounter{equation}{1}
|
||||
\setcounter{enumi}{3}
|
||||
\setcounter{enumii}{0}
|
||||
@ -46,7 +46,7 @@
|
||||
\setcounter{lstnumber}{1}
|
||||
\setcounter{Solution}{26}
|
||||
\setcounter{exc}{71}
|
||||
\setcounter{Solution OS}{2}
|
||||
\setcounter{exosc}{2}
|
||||
\setcounter{Solution OS}{3}
|
||||
\setcounter{exosc}{3}
|
||||
\setcounter{lstlisting}{0}
|
||||
}
|
||||
|
@ -81,7 +81,7 @@ P-R-\nonumber\\
|
||||
G\frac{M_L\cdot m}{d_{T-L}^2}\cdot (1+\frac{2\cdot R_T}{d_{T-L}})+G\frac{M_L}{d_{T-L}^2}&=0\label{DLmaree}\\
|
||||
P-R-G\frac{M_L\cdot m}{d_{T-L}^2}-\nonumber\\
|
||||
2\dot G\frac{M_L\cdot m}{d_{T-L}^3}\cdot R_T+G\frac{M_L\cdot m}{d_{T-L}^2}&=0\nonumber\\
|
||||
P-R-2\dot G\frac{M_L\cdot m}{d_{T-L}^3}\cdot R_T&=0\label{secondeloimaree}
|
||||
P-R-2\cdot G\frac{M_L\cdot m}{d_{T-L}^3}\cdot R_T&=0\label{secondeloimaree}
|
||||
\end{align}
|
||||
Pour établir l'équation \ref{DLmaree}, on a utilisé le développement limité : \((1+x)^p\simeq1+p\cdot x\).
|
||||
\begin{align*}
|
||||
|
Binary file not shown.
@ -1171,4 +1171,4 @@
|
||||
\indexentry{proc\IeC {\'e}dure}{210}
|
||||
\indexentry{Atwood}{211}
|
||||
\indexentry{Atwood}{212}
|
||||
\indexentry{erreur syst\IeC {\'e}matique}{221}
|
||||
\indexentry{erreur syst\IeC {\'e}matique}{223}
|
||||
|
@ -172,4 +172,5 @@
|
||||
\contentsline {figure}{\numberline {L.2}{\ignorespaces La poulie}}{212}
|
||||
\contentsline {figure}{\numberline {L.3}{\ignorespaces Masse pendante}}{212}
|
||||
\contentsline {figure}{\numberline {L.4}{\ignorespaces Un ascenseur\relax }}{214}
|
||||
\contentsline {figure}{\numberline {L.5}{\ignorespaces Plan inclin\IeC {\'e}}}{221}
|
||||
\addvspace {10\p@ }
|
||||
|
@ -1,4 +1,4 @@
|
||||
This is pdfTeX, Version 3.14159265-2.6-1.40.17 (TeX Live 2016/Debian) (preloaded format=latex 2018.12.20) 21 DEC 2018 21:05
|
||||
This is pdfTeX, Version 3.14159265-2.6-1.40.17 (TeX Live 2016/Debian) (preloaded format=latex 2018.12.20) 4 JAN 2019 10:38
|
||||
entering extended mode
|
||||
restricted \write18 enabled.
|
||||
%&-line parsing enabled.
|
||||
@ -3229,58 +3229,58 @@ Output from handle ans going to Solutions.tex
|
||||
\openout12 = `Solutions.tex'.
|
||||
|
||||
|
||||
Underfull \hbox (badness 1178) in paragraph at lines 974--985
|
||||
Underfull \hbox (badness 1178) in paragraph at lines 1042--1053
|
||||
\T1/cmr/m/n/10 teur de la Lune avec les don-nées des ta-bles.
|
||||
[]
|
||||
|
||||
|
||||
Underfull \hbox (badness 1609) in paragraph at lines 1025--1026
|
||||
Underfull \hbox (badness 1609) in paragraph at lines 1093--1094
|
||||
[]\T1/cmr/m/n/10 Une voiture a une masse $\OML/cmm/m/it/10 m \OT1/cmr/m/n/10 =
|
||||
[]
|
||||
|
||||
|
||||
Underfull \hbox (badness 10000) in paragraph at lines 1033--1053
|
||||
Underfull \hbox (badness 10000) in paragraph at lines 1101--1121
|
||||
[]\T1/cmr/m/n/10 Réponses : $[]$, $[]$ et
|
||||
[]
|
||||
|
||||
[212]
|
||||
Underfull \hbox (badness 2343) in paragraph at lines 1234--1242
|
||||
Underfull \hbox (badness 2343) in paragraph at lines 1302--1310
|
||||
\T1/cmr/m/n/10 hor-i-zon-tale-ment aug-mente sa vitesse de $[]$ à
|
||||
[]
|
||||
|
||||
|
||||
Underfull \hbox (badness 10000) in paragraph at lines 1244--1244
|
||||
Underfull \hbox (badness 10000) in paragraph at lines 1312--1312
|
||||
[]\T1/cmr/bx/n/12 Relatifs à l'énergie hy-
|
||||
[]
|
||||
|
||||
|
||||
Underfull \hbox (badness 2245) in paragraph at lines 1259--1274
|
||||
Underfull \hbox (badness 2245) in paragraph at lines 1327--1342
|
||||
[]\T1/cmr/m/n/10 Le même Robin-son Cru-soé veut
|
||||
[]
|
||||
|
||||
|
||||
Underfull \hbox (badness 10000) in paragraph at lines 1277--1291
|
||||
Underfull \hbox (badness 10000) in paragraph at lines 1345--1359
|
||||
[]\T1/cmr/m/n/10 On désire fournir $[]$
|
||||
[]
|
||||
|
||||
|
||||
Underfull \hbox (badness 4144) in paragraph at lines 1309--1330
|
||||
[213]
|
||||
Underfull \hbox (badness 4144) in paragraph at lines 1377--1398
|
||||
[]\T1/cmr/m/n/10 Une éoli-enne a des pales dont
|
||||
[]
|
||||
|
||||
[213]
|
||||
Underfull \hbox (badness 1005) in paragraph at lines 1373--1393
|
||||
|
||||
Underfull \hbox (badness 1005) in paragraph at lines 1441--1461
|
||||
[]\T1/cmr/m/n/10 Quel est le débit d'eau ($\OML/cmm/m/it/10 c[] \OT1/cmr/m/n/10
|
||||
=
|
||||
[]
|
||||
|
||||
|
||||
Underfull \hbox (badness 10000) in paragraph at lines 1396--1403
|
||||
Underfull \hbox (badness 10000) in paragraph at lines 1464--1471
|
||||
[]\T1/cmr/m/n/10 Un par-ti-c-ulier con-somme
|
||||
[]
|
||||
|
||||
|
||||
Underfull \hbox (badness 3271) in paragraph at lines 1396--1403
|
||||
Underfull \hbox (badness 3271) in paragraph at lines 1464--1471
|
||||
[]$ \T1/cmr/m/n/10 d'énergie élec-trique. Il désire
|
||||
[]
|
||||
|
||||
@ -3329,11 +3329,22 @@ Underfull \hbox (badness 1769) in paragraph at lines 283--285
|
||||
\T1/cmr/m/n/10 Compte tenu des frot-te-ments, l'énergie to-tale
|
||||
[]
|
||||
|
||||
[218] [219]) (./SolutionsOS.tex) [220])
|
||||
[218] [219]) (./SolutionsOS.tex (./Annexe-Exercices/Images/incline.eps_tex
|
||||
File: ./Annexe-Exercices/Images/incline.eps Graphic file (type eps)
|
||||
|
||||
<./Annexe-Exercices/Images/incline.eps>)
|
||||
|
||||
LaTeX Warning: `h' float specifier changed to `ht'.
|
||||
|
||||
[220]) [221])
|
||||
\openout2 = `Annexe-Incertitudes/Annexe-Incertitudes.aux'.
|
||||
|
||||
(./Annexe-Incertitudes/Annexe-Incertitudes.tex [222
|
||||
|
||||
(./Annexe-Incertitudes/Annexe-Incertitudes.tex
|
||||
|
||||
|
||||
|
||||
]
|
||||
Appendix M.
|
||||
|
||||
Underfull \vbox (badness 4205) has occurred while \output is active []
|
||||
@ -3341,13 +3352,11 @@ Underfull \vbox (badness 4205) has occurred while \output is active []
|
||||
|
||||
Underfull \vbox (badness 4429) has occurred while \output is active []
|
||||
|
||||
[221
|
||||
|
||||
|
||||
[223
|
||||
|
||||
|
||||
])
|
||||
[222] (./CoursMecaniqueOSDF.ent
|
||||
[224] (./CoursMecaniqueOSDF.ent
|
||||
Underfull \hbox (badness 7415) in paragraph at lines 2--22
|
||||
\T1/cmtt/m/n/8 hubble . nasa . gov / multimedia / astronomy . php$ \T1/cmr/m/n/
|
||||
8 no-tam-ment
|
||||
@ -3555,7 +3564,7 @@ Underfull \hbox (badness 2057) in paragraph at lines 616--624
|
||||
ommons .
|
||||
[]
|
||||
|
||||
[223
|
||||
[225
|
||||
|
||||
]
|
||||
Underfull \hbox (badness 10000) in paragraph at lines 626--650
|
||||
@ -3690,7 +3699,7 @@ Underfull \hbox (badness 5077) in paragraph at lines 868--883
|
||||
cmr/m/n/8 ou
|
||||
[]
|
||||
|
||||
) [224
|
||||
) [226
|
||||
|
||||
] (./CoursMecaniqueOSDF.bbl
|
||||
Underfull \hbox (badness 5954) in paragraph at lines 37--43
|
||||
@ -3713,15 +3722,15 @@ Underfull \hbox (badness 1325) in paragraph at lines 140--152
|
||||
\T1/cmr/m/n/10 Ou-vrage très com-plet et très math-é-ma-tique
|
||||
[]
|
||||
|
||||
[225
|
||||
[227
|
||||
|
||||
|
||||
]) (./CoursMecaniqueOSDF.ind [226
|
||||
]) (./CoursMecaniqueOSDF.ind [228
|
||||
|
||||
] [227
|
||||
] [229
|
||||
|
||||
] [228] [229] [230] [231] [232]
|
||||
[233] [234
|
||||
] [230] [231] [232] [233] [234]
|
||||
[235] [236
|
||||
|
||||
]) (./CoursMecaniqueOSDF.aux (./Prefaces/Prefaces.aux)
|
||||
(./Introduction/Introduction.aux) (./Cinematique/Cinematique.aux)
|
||||
@ -3753,12 +3762,12 @@ LaTeX Warning: There were multiply-defined labels.
|
||||
|
||||
)
|
||||
Here is how much of TeX's memory you used:
|
||||
19445 strings out of 494830
|
||||
307201 string characters out of 6176634
|
||||
446163 words of memory out of 5000000
|
||||
21936 multiletter control sequences out of 15000+600000
|
||||
19450 strings out of 494830
|
||||
307338 string characters out of 6176634
|
||||
446175 words of memory out of 5000000
|
||||
21938 multiletter control sequences out of 15000+600000
|
||||
34754 words of font info for 87 fonts, out of 8000000 for 9000
|
||||
36 hyphenation exceptions out of 8191
|
||||
55i,29n,92p,2650b,558s stack positions out of 5000i,500n,10000p,200000b,80000s
|
||||
|
||||
Output written on CoursMecaniqueOSDF.dvi (234 pages, 1468336 bytes).
|
||||
Output written on CoursMecaniqueOSDF.dvi (236 pages, 1475996 bytes).
|
||||
|
@ -40,5 +40,5 @@
|
||||
\addvspace {10\p@ }
|
||||
\addvspace {10\p@ }
|
||||
\addvspace {10\p@ }
|
||||
\contentsline {table}{\numberline {M.1}{\ignorespaces La longueur des baguettes de pain\relax }}{221}
|
||||
\contentsline {table}{\numberline {M.2}{\ignorespaces La longueur d'autres baguettes de pain\relax }}{222}
|
||||
\contentsline {table}{\numberline {M.1}{\ignorespaces La longueur des baguettes de pain\relax }}{223}
|
||||
\contentsline {table}{\numberline {M.2}{\ignorespaces La longueur d'autres baguettes de pain\relax }}{224}
|
||||
|
Binary file not shown.
File diff suppressed because it is too large
Load Diff
174
CoursMecaniqueOSDF.tex.bak
Normal file
174
CoursMecaniqueOSDF.tex.bak
Normal file
@ -0,0 +1,174 @@
|
||||
\documentclass[twocolumn,french,a4paper]{book}
|
||||
%\documentclass[twocolumn,french,draft]{book} % draft dans les [] pour voir les overfull hbox
|
||||
|
||||
\input{Preambule.tex} % Toutes les instructions du préambule sont dans un fichier séparé qui est utilisé pour tous les cours.
|
||||
% Il est dans le répertoire où se trouve le présent fichier et
|
||||
% il faut le mettre à l'extérieur de ce dossier. c'est pourquoi on a --> ../Preambule.tex
|
||||
|
||||
\usepackage[arrow,matrix,tips,frame]{xy}
|
||||
%\renewcommand{\bibname}{Bibliographie}
|
||||
|
||||
%\usepackage[DF]{optional} % Pour réaliser le cours de base de Discipline Fondamentale (DF)
|
||||
\usepackage[OS]{optional} % Pour réaliser le cours complet d'Option Spécifique (OS)
|
||||
% La commande pour ajouter les parties d'OS est \opt{OS}{parties}
|
||||
|
||||
%---------------------------------------------------------------
|
||||
% Préambule spécifique à ce document
|
||||
\usepackage{answers} % pour utiliser le module answers
|
||||
\Newassociation{sol}{Solution}{ans} % définition de l'étiquette Solution du module answers
|
||||
\newtheorem{exc}{Exercice} % définition de l'étiquette Exercice du module answers
|
||||
\newenvironment{ex}{\begin{exc}\normalfont}{\end{exc}} % cela (\normalfont) annule l'italique des énoncés des exercices
|
||||
\Newassociation{solos}{Solution OS}{ansos}
|
||||
\newtheorem{exosc}{Exercice OS}
|
||||
\newenvironment{exos}{\begin{exosc}\normalfont}{\end{exosc}}
|
||||
|
||||
\setlength{\headheight}{12.2pt} % spécifie la hauteur de l'entête pour qu'elle ne couvre pas le titre
|
||||
|
||||
\setcounter{topnumber}{3} % nombre maximal de flottant en haut d'une page (par défaut 2)
|
||||
\setcounter{bottomnumber}{2} % nombre maximal de flottant en bas d'une page (par défaut 1)
|
||||
%\setcounter{totalnumber}{3} % nombre maximal de flottant sur une page (par défaut 3)
|
||||
\renewcommand{\topfraction}{0.9} % proportion maximale de la page qui peut recevoir des flottants en haut de la page (par défaut 0,7)
|
||||
\renewcommand{\textfraction}{0.1} % proportion minimale d'une page qui reçoit du texte (sans les pages de flottants)
|
||||
\renewcommand{\floatpagefraction}{0.8} % proportion minimale de flottants sur une page pour qu'elle devienne une page uniquement de flottants
|
||||
\renewcommand{\bottomfraction}{0.5} % proportion maximale de la page qui peut recevoir des flottants en bas de la page (par défaut 0,3)
|
||||
|
||||
%\newcommand\relphantom[1]{\mathrel{\phantom{#1}}} % sert à afficher un = invisible
|
||||
%----------------------------------------------------------------
|
||||
|
||||
\graphicspath{{./Images/}{./Introduction/Images/}{./Cinematique/Images/}{./Dynamique/Images/}{./MecaniqueDim/Images/}{./MecaniqueDifferentielle/Images/}{./QtiteMvt/Images/}{./Energie/Images/}{./EnergieOS/Images/}{./Thermodynamique/Images/}{./ThermodynamiqueOS/Images/}{./Annexe-UnitesInternationales/Images/}{./Annexe-SystemeCoordonnees/Images/}{./Annexe-MesuresDistances/Images/}{./Annexe-TravauxPratiques/Images/}{./Annexe-Rotations/Images/}{./Annexe-MRUA/Images/}{./Annexe-ChuteLune/Images/}{./Annexe-Satellites/Images/}{./Annexe-Relativite/Images/}{./Annexe-Maree/Images/}{./Annexe-Energies/Images/}{./Annexe-Exercices/Images/}{./Annexe-Incertitudes/Images/}} % spécifie les dossiers dans lesquels sont les images
|
||||
|
||||
%--------------------------------------------------------------
|
||||
% définition de l'image de la page de titre
|
||||
\usepackage{eso-pic} % pour mettre une image en fond de première page
|
||||
\newcommand\BackgroundPic{
|
||||
\put(0,0){
|
||||
\parbox[b][\paperheight]{\paperwidth}{%
|
||||
\vfill
|
||||
\centering
|
||||
%\includegraphics[width=\paperwidth,height=\paperheight,keepaspectratio]{TrouNoir.eps}%
|
||||
\includegraphics[width=\paperwidth,height=\paperheight]{TrouNoir.eps}%
|
||||
\vfill
|
||||
}}}
|
||||
%--------------------------------------------------------------
|
||||
% inclusion des macros
|
||||
\include{Macros}
|
||||
|
||||
\begin{document}
|
||||
|
||||
%--------------------------------------------------------------
|
||||
% inclusion des Préfaces
|
||||
\include{Prefaces/Prefaces}
|
||||
%--------------------------------------------------------------
|
||||
|
||||
\twocolumn
|
||||
|
||||
%--------------------------------------------------------------
|
||||
% table des matières, liste des figures et liste des tables
|
||||
\tableofcontents{}
|
||||
|
||||
\renewcommand{\listfigurename}{Liste des figures}
|
||||
\listoffigures
|
||||
|
||||
\myclearpage
|
||||
|
||||
\listoftables
|
||||
%--------------------------------------------------------------
|
||||
|
||||
\myclearpage
|
||||
|
||||
%--------------------------------------------------------------
|
||||
% inclusion du chapitre d'introduction
|
||||
\include{Introduction/Introduction}
|
||||
|
||||
% inclusion du chapitre de cinématique
|
||||
\include{Cinematique/Cinematique}
|
||||
|
||||
% inclusion du chapitre de dynamique
|
||||
\include{Dynamique/Dynamique}
|
||||
|
||||
% inclusion de la Mécanique en plusieurs dimensions (OS)
|
||||
\opt{OS}{\include{MecaniqueDim/MecaniqueDim}}
|
||||
|
||||
% inclusion de la Mécanique différentielle (OS)
|
||||
\opt{OS}{\include{MecaniqueDifferentielle/MecaniqueDifferentielle}}
|
||||
|
||||
% inclusion de la Quantité de mouvement (OS)
|
||||
\opt{OS}{\include{QtiteMvt/QtiteMvt}}
|
||||
|
||||
% inclusion du chapitre d'énergie
|
||||
\include{Energie/Energie}
|
||||
|
||||
% inclusion de lénergie (OS)
|
||||
\opt{OS}{\include{EnergieOS/EnergieOS}}
|
||||
|
||||
% inclusion du chapitre de thermodynamique
|
||||
\include{Thermodynamique/Thermodynamique}
|
||||
|
||||
% inclusion de la Thermodynamique (OS)
|
||||
\opt{OS}{\include{ThermodynamiqueOS/ThermodynamiqueOS}}
|
||||
%--------------------------------------------------------------
|
||||
|
||||
\appendix
|
||||
|
||||
\onecolumn
|
||||
|
||||
%--------------------------------------------------------------
|
||||
% inclusion de l'annexe Unités du système international
|
||||
\include{Annexe-UnitesInternationales/Annexe-UnitesInternationales}
|
||||
|
||||
% inclusion de l'annexe Deux systèmes de coordonnées
|
||||
\include{Annexe-SystemeCoordonnees/Annexe-SystemeCoordonnees}
|
||||
|
||||
% inclusion de l'annexe Mesures de distances
|
||||
\include{Annexe-MesuresDistances/Annexe-MesuresDistances}
|
||||
|
||||
% inclusion de l'annexe Travaux pratiques
|
||||
\include{Annexe-TravauxPratiques/Annexe-TravauxPratiques}
|
||||
|
||||
% inclusion de l'annexe Rotations
|
||||
\include{Annexe-Rotations/Annexe-Rotations}
|
||||
|
||||
% inclusion de l'annexe MRUA développements
|
||||
\include{Annexe-MRUA/Annexe-MRUA}
|
||||
|
||||
% inclusion de l'annexe Chute de la lune
|
||||
\include{Annexe-ChuteLune/Annexe-ChuteLune}
|
||||
|
||||
% inclusion de l'annexe Satellite en orbite géostationnaire
|
||||
\include{Annexe-Satellites/Annexe-Satellites}
|
||||
|
||||
% inclusion de l'annexe Relativité
|
||||
\include{Annexe-Relativite/Annexe-Relativite}
|
||||
|
||||
% inclusion de l'annexe Marées
|
||||
\include{Annexe-Maree/Annexe-Maree}
|
||||
|
||||
% inclusion de l'annexe Énergies
|
||||
\include{Annexe-Energies/Annexe-Energies}
|
||||
|
||||
% inclusion de l'annexe Exercices
|
||||
\include{Annexe-Exercices/Annexe-Exercices}
|
||||
|
||||
% inclusion de l'annexe Incertitudes (OS)
|
||||
\opt{OS}{\include{Annexe-Incertitudes/Annexe-Incertitudes}}
|
||||
%--------------------------------------------------------------
|
||||
|
||||
\theendnotes
|
||||
|
||||
\myclearpage
|
||||
|
||||
%\nocite{*} % pour mettre toutes les entrées dans la biblio, y compris celles non citées ds le texte
|
||||
\bibliographystyle{apalike-fr} % le style de bibliographie apalike francisé. Attention, il ne faut pas le module apalike, mais il faut le module natbib.
|
||||
%\bibliographystyle{apalike} % le style de bibliographie
|
||||
\bibliography{../Bibliographies/BiblioCours} % définit le fichier des réf. biblio. nom.bib
|
||||
% le logiciel utilisé pour faire la biblio est pybliographic (pybliographer en ligne de commande) !!! suite à la suppression de
|
||||
% pybliographic (pybliographer a maintenant une ui) de Lenny, j'utilise JABREF <-- très très bien.
|
||||
\printindex{} % attention, pour que l'index soit mis à jour il faut lancer la commande de konsole : makeindex -s ../Perso.ist nom_du_cours.idx
|
||||
% le Perso.ist est un fichier disant qu'il faut mettre des lettres entre les parties de l'index
|
||||
|
||||
%\renewcommand{\listfigurename}{Liste des figures}
|
||||
%\listoffigures % ai tout basculé après la table des matières car je n'arrivais pas à éliminer le petit bug ci-dessous. Mais le compagnon latex fait idem.
|
||||
%\listoftables % un petit problème (bug ?) d'alignement m'a fait retirer provisoirement cette liste
|
||||
|
||||
\end{document}
|
||||
\endinput % termine l'importation des solutions
|
@ -389,14 +389,14 @@
|
||||
\contentsline {subsection}{\numberline {L.1.7}Relatifs \IeC {\`a} la physique aristot\IeC {\'e}licienne}{210}
|
||||
\contentsline {subsection}{\numberline {L.1.8}Relatifs \IeC {\`a} la physique newtonienne}{210}
|
||||
\contentsline {subsection}{\numberline {L.1.9}Relatifs aux forces}{212}
|
||||
\contentsline {subsection}{\numberline {L.1.10}Relatifs \IeC {\`a} l'\IeC {\'e}nergie}{212}
|
||||
\contentsline {subsection}{\numberline {L.1.10}Relatifs \IeC {\`a} l'\IeC {\'e}nergie}{213}
|
||||
\contentsline {subsection}{\numberline {L.1.11}Relatifs \IeC {\`a} la conservation de l'\IeC {\'e}nergie}{213}
|
||||
\contentsline {subsection}{\numberline {L.1.12}Relatifs \IeC {\`a} l'\IeC {\'e}nergie hydraulique}{213}
|
||||
\contentsline {subsection}{\numberline {L.1.13}Relatifs \IeC {\`a} l'\IeC {\'e}nergie \IeC {\'e}olienne}{213}
|
||||
\contentsline {subsection}{\numberline {L.1.14}Relatifs \IeC {\`a} l'\IeC {\'e}nergie solaire}{214}
|
||||
\contentsline {section}{\numberline {L.2}Solutions}{214}
|
||||
\contentsline {section}{\numberline {L.3}Solutions OS}{220}
|
||||
\contentsline {chapter}{\numberline {M}Ordre de grandeur, erreur et incertitudes}{221}
|
||||
\contentsline {section}{\numberline {M.1}Ordre de grandeur}{221}
|
||||
\contentsline {section}{\numberline {M.2}\IeC {\'E}cart et erreur}{221}
|
||||
\contentsline {section}{\numberline {M.3}Incertitude}{222}
|
||||
\contentsline {chapter}{\numberline {M}Ordre de grandeur, erreur et incertitudes}{223}
|
||||
\contentsline {section}{\numberline {M.1}Ordre de grandeur}{223}
|
||||
\contentsline {section}{\numberline {M.2}\IeC {\'E}cart et erreur}{223}
|
||||
\contentsline {section}{\numberline {M.3}Incertitude}{224}
|
||||
|
@ -20,6 +20,71 @@
|
||||
|
||||
\end{Solution OS}
|
||||
\begin{Solution OS}{2}
|
||||
Deux forces agissent ici : la réaction du plan, qui lui est normale (c'est-à-dire perpendiculaire), et le poids de la masse. Comme la réaction du plan n'a aucune composante parallèlement au plan, elle ne peut être responsable de l'accélération de la masse le long de celui-ci.
|
||||
|
||||
Il faut donc trouver la composante du poids qui est parallèle au plan incliné. L'angle entre le poids et un plan horizontal est de \unit{90}{\degree}. Quand le plan est incliné, cet angle diminue de la valeur de l'inclinaison. L'angle \(\beta\) entre le plan incliné et le poids et donc \(\beta=90-\alpha\).
|
||||
|
||||
Comme la projection du poids selon l'angle \(\beta\) correspond à sa composante parallèle au plan, dans le triangle rectangle composé du poids comme hypoténuse et de ses composantes parallèle et perpendiculaire au plan, la composante parallèle au plan correspond au côté adjacent. Ainsi, on peut écrire~:
|
||||
\begin{align*}
|
||||
P_{//}&=P\cdot\cos(\beta)=P\cdot\cos(90-\alpha)\\
|
||||
&=P\cdot\sin(\alpha)
|
||||
\end{align*}
|
||||
La seconde loi de Newton s'écrit donc le long du plan incliné~:
|
||||
\begin{align*}
|
||||
\sum F^{ext}=P\cdot\sin(\alpha)&=m\cdot a\;\Rightarrow\\
|
||||
m\cdot g\cdot\sin(\alpha)&=m\cdot a\;\Rightarrow\\
|
||||
a&=g\cdot\sin(\alpha)\;\Rightarrow\\
|
||||
a&=9,81\cdot\sin(20)=\unit{3,36}{\metre\per\second\squared}
|
||||
\end{align*}
|
||||
Avec une vitesse initiale nulle, pour un MRUA d'accélération calculée ci-dessus, la vitesse au bout d'un temps t=\unit{2}{\second} s'obtient par~:
|
||||
\[v=a\cdot t+v_0=3,36\cdot 2=\unit{9,72}{\metre\per\second}\]
|
||||
|
||||
\medskip
|
||||
Une autre manière de résoudre le problème est de procéder avec méthode. Le système qu'on doit choisir est bien évidemment la masse m, puisque c'est de celle-ci qu'on cherche l'accélération pour en trouver la vitesse au bout de \unit{2}{\second}.
|
||||
\begin{figure}[h]
|
||||
\centering
|
||||
\caption[Plan incliné]{Le plan incliné}\label{incline}
|
||||
\medskip
|
||||
\def\svgwidth{6cm}
|
||||
\input{Annexe-Exercices/Images/incline.eps_tex}
|
||||
\end{figure}
|
||||
|
||||
La figure \ref{incline} présente ensuite le dessin des forces extérieures et le choix du système d'axes. Remarquez que ce dernier l'a été selon l'inclinaison du plan. Il aurait pu ne pas en être ainsi, mais ce choix simplifie les calculs, car la masse étant contrainte à se déplacer le long du plan, son accélération perpendiculairement est nulle. Les équations de la seconde loi de Newton, obtenues par projection des forces extérieures et de l'accélération selon les axes, peuvent alors s'écrire :
|
||||
\begin{align*}
|
||||
\sum F^{ext}_x&=P_x=m\cdot a_x &\text{sur l'axe x}\\
|
||||
\sum F^{ext}_y&=R-P_y=m\cdot a_y=0 &\text{sur l'axe y}
|
||||
\end{align*}
|
||||
car l'accélération perpendiculairement au plan est nulle, comme déjà mentionné.
|
||||
|
||||
\smallskip
|
||||
Si on considére l'angle \(\alpha\), en s'imaginant le plan incliné horizontal, on comprends qu'il se reporte entre le vecteur poids \(\overleftarrow{P}\) et sa compostante selon y \(P_y\).
|
||||
|
||||
Avec le triangle rectangle formé par le poids et ses composantes et un peu de trigonométrie, on peut en déduire~:
|
||||
\begin{align*}
|
||||
P_x &= P\cdot \sin(\alpha)\\
|
||||
P_y &= P\cdot \cos(\alpha)
|
||||
\end{align*}
|
||||
Comme par ailleurs on sait que \(P=m\cdot g\), on peut réécrire les équations de Newton sur les axes comme~:
|
||||
\begin{align*}
|
||||
\sum F^{ext}_x&=m\cdot g\cdot \sin(\alpha)=m\cdot a_x\\
|
||||
\sum F^{ext}_y&=R-m\cdot g\cdot \cos(\alpha)=m\cdot a_y=0
|
||||
\end{align*}
|
||||
La première de ces équations permet de trouver l'accélération du bloc selon le plan incliné~:
|
||||
\begin{align*}
|
||||
a=a_x&=g\cdot \sin(\alpha)\\
|
||||
&=9,81\cdot\sin(20)=\unit{3,36}{\metre\per\second\squared}
|
||||
\end{align*}
|
||||
|
||||
\smallskip
|
||||
Mais une information supplémentaire nous est donnée par la seconde équation, c'est la valeur de la réaction R au plan~:
|
||||
\begin{align*}
|
||||
R&=m\cdot g\cdot \cos(\alpha)\\
|
||||
&=3\cdot 9,81\cdot \cos(20)=\unit{27,67}{\newton}
|
||||
\end{align*}
|
||||
|
||||
|
||||
\end{Solution OS}
|
||||
\begin{Solution OS}{3}
|
||||
Un corrigé de test.
|
||||
|
||||
\end{Solution OS}
|
||||
|
Loading…
Reference in New Issue
Block a user