CoursMecaniqueEnergie/SolutionsOS.tex

91 lines
5.1 KiB
TeX
Raw Normal View History

2018-12-21 17:36:44 +01:00
\begin{Solution OS}{1}
On commence par choisir le système. Pour éviter de devoir calculer la tension dans la corde, on le choisit comme constitué de la corde et des deux masses M et m.
Les forces extérieures sont alors au nombre de trois. Le plan horizontal exerce sur la masse M une force de soutient verticale égale et opposée à son poids (mais qui ne sont pas l'action et la réaction l'une de l'autre), puisque la masse se déplace horizontalement. Ces deux forces s'annulent donc. Reste le poids de la masse m, seule force extérieure à agir pour accélérer le système.
On peut donc écrire, selon la seconde loi de Newton~:
\[\sum F^{ext}=m\cdot g=(M+m)\cdot a\]
où M+m est la masse du système. Ainsi, finalement, on peut calculer la valeur de l'accélération~:
\begin{align*}
&m\cdot g=(M+m)\cdot a\;\Rightarrow\\
&a=\frac{m}{M+m}\cdot g=\frac{2}{5}\cdot 9,81=\unit{3,924}{\metre\per\second\squared}
\end{align*}
\medskip
À partir de l'accélération, on peut ensuite calculer la vitesse au bout d'un mètre, grâce à l'équation du MRUA~:
\begin{align*}
v^2&=v_0^2+2\cdot a\cdot d\;\Rightarrow\\
v^2&=0+2\cdot 3,924\cdot 1\;\Rightarrow\\
v&=\sqrt{2\cdot 3,924}=\unit{2,8}{\metre\per\second}
\end{align*}
\end{Solution OS}
\begin{Solution OS}{2}
Deux forces agissent ici : la réaction du plan, qui lui est normale (c'est-à-dire perpendiculaire), et le poids de la masse. Comme la réaction du plan n'a aucune composante parallèlement au plan, elle ne peut être responsable de l'accélération de la masse le long de celui-ci.
Il faut donc trouver la composante du poids qui est parallèle au plan incliné. L'angle entre le poids et un plan horizontal est de \unit{90}{\degree}. Quand le plan est incliné, cet angle diminue de la valeur de l'inclinaison. L'angle \(\beta\) entre le plan incliné et le poids et donc \(\beta=90-\alpha\).
Comme la projection du poids selon l'angle \(\beta\) correspond à sa composante parallèle au plan, dans le triangle rectangle composé du poids comme hypoténuse et de ses composantes parallèle et perpendiculaire au plan, la composante parallèle au plan correspond au côté adjacent. Ainsi, on peut écrire~:
\begin{align*}
P_{//}&=P\cdot\cos(\beta)=P\cdot\cos(90-\alpha)\\
&=P\cdot\sin(\alpha)
\end{align*}
La seconde loi de Newton s'écrit donc le long du plan incliné~:
\begin{align*}
\sum F^{ext}=P\cdot\sin(\alpha)&=m\cdot a\;\Rightarrow\\
m\cdot g\cdot\sin(\alpha)&=m\cdot a\;\Rightarrow\\
a&=g\cdot\sin(\alpha)\;\Rightarrow\\
a&=9,81\cdot\sin(20)=\unit{3,36}{\metre\per\second\squared}
\end{align*}
Avec une vitesse initiale nulle, pour un MRUA d'accélération calculée ci-dessus, la vitesse au bout d'un temps t=\unit{2}{\second} s'obtient par~:
\[v=a\cdot t+v_0=3,36\cdot 2=\unit{9,72}{\metre\per\second}\]
\medskip
Une autre manière de résoudre le problème est de procéder avec méthode. Le système qu'on doit choisir est bien évidemment la masse m, puisque c'est de celle-ci qu'on cherche l'accélération pour en trouver la vitesse au bout de \unit{2}{\second}.
\begin{figure}[h]
\centering
\caption[Plan incliné]{Le plan incliné}\label{incline}
\medskip
\def\svgwidth{6cm}
\input{Annexe-Exercices/Images/incline.eps_tex}
\end{figure}
La figure \ref{incline} présente ensuite le dessin des forces extérieures et le choix du système d'axes. Remarquez que ce dernier l'a été selon l'inclinaison du plan. Il aurait pu ne pas en être ainsi, mais ce choix simplifie les calculs, car la masse étant contrainte à se déplacer le long du plan, son accélération perpendiculairement est nulle. Les équations de la seconde loi de Newton, obtenues par projection des forces extérieures et de l'accélération selon les axes, peuvent alors s'écrire :
\begin{align*}
\sum F^{ext}_x&=P_x=m\cdot a_x &\text{sur l'axe x}\\
\sum F^{ext}_y&=R-P_y=m\cdot a_y=0 &\text{sur l'axe y}
\end{align*}
car l'accélération perpendiculairement au plan est nulle, comme déjà mentionné.
\smallskip
Si on considére l'angle \(\alpha\), en s'imaginant le plan incliné horizontal, on comprends qu'il se reporte entre le vecteur poids \(\overleftarrow{P}\) et sa compostante selon y \(P_y\).
Avec le triangle rectangle formé par le poids et ses composantes et un peu de trigonométrie, on peut en déduire~:
\begin{align*}
P_x &= P\cdot \sin(\alpha)\\
P_y &= P\cdot \cos(\alpha)
\end{align*}
Comme par ailleurs on sait que \(P=m\cdot g\), on peut réécrire les équations de Newton sur les axes comme~:
\begin{align*}
\sum F^{ext}_x&=m\cdot g\cdot \sin(\alpha)=m\cdot a_x\\
\sum F^{ext}_y&=R-m\cdot g\cdot \cos(\alpha)=m\cdot a_y=0
\end{align*}
La première de ces équations permet de trouver l'accélération du bloc selon le plan incliné~:
\begin{align*}
a=a_x&=g\cdot \sin(\alpha)\\
&=9,81\cdot\sin(20)=\unit{3,36}{\metre\per\second\squared}
\end{align*}
\smallskip
Mais une information supplémentaire nous est donnée par la seconde équation, c'est la valeur de la réaction R au plan~:
\begin{align*}
R&=m\cdot g\cdot \cos(\alpha)\\
&=3\cdot 9,81\cdot \cos(20)=\unit{27,67}{\newton}
\end{align*}
\end{Solution OS}
\begin{Solution OS}{3}
Un corrigé de test.
2018-12-21 17:36:44 +01:00
\end{Solution OS}