Deux exos sur les cycles

This commit is contained in:
Guyot 2022-11-27 21:02:32 +01:00
parent 747408f7b7
commit de1d4b2fd8
14 changed files with 3908 additions and 53 deletions

View File

@ -2769,6 +2769,121 @@ Les valeurs des c\oe fficients de dilatation thermique sont celles du tableau \r
\end{solos}
\end{exos}
\begin{exos}
On fait passer \SI{32}{\gram} de méthane (\(CH_4\)) de l'état (\SI{1}{\bar} ; \SI{60}{\celsius}) à l'état (\SI{5}{\bar} ; \SI{60}{\celsius}) par une compression isotherme, puis, par une compression adiabatique, à l'état (\SI{30}{\bar} ; ?). Calculez our chaque transformations~:
\begin{enumerate}
\item le travail dépensé,
\item la chaleur échangée avec le milieu extérieur et
\item la variation d'énergie interne.
\end{enumerate}
\begin{solos}
Comme la masse atomique du carbone vaut \SI{12}{uma} et celle de l'hydrogène \SI{1}{uma}, celle de la molécule de méthane (\(CH_4\)) vaut \SI{16}{uma}. Ainsi, sa masse molaire vaut \SI{16}{\gram\per\mol}. Si on a \SI{32}{\gram} de ce gaz, on a donc \SI{2}{\mol} de \(CH_4\).
\subsubsection*{Compression isotherme}
Avec une température de 273 + 60 = \SI{333}{\kelvin}, on peut alors calculer les volumes~:
\begin{align*}
V_1&=\frac{n\cdot R\cdot T}{p_1}=\frac{2\cdot 8,31\cdot 333}{10^5}=\SI{0,055}{\metre\cubed}\\
V_2&=\frac{n\cdot R\cdot T}{p_2}=\frac{2\cdot 8,31\cdot 333}{5\cdot 10^5}=\SI{0,011}{\metre\cubed}
\end{align*}
Le travail isotherme se calcule alors aisément par~:
\begin{align*}
A&=n\cdot R\cdot T\cdot ln(\frac{V_2}{V_1})\\
&=2\cdot 8,31\cdot 333\cdot ln(\frac{0,011}{0,055}=\SI{-8907}{\joule}
\end{align*}
Comme la compression est isotherme, on a aussi~:
\[\Delta U = 0\;\text{et}\;Q=A=\SI{-8907}{\joule}\]
\subsubsection*{Compression adiabatique}
La compression adiabatique se fait de l'état 2 à l'état 3. Comme vu précédemment, le volume de l'état 2 est \(V_2=\SI{0,011}{\metre\cubed}\).
Des propriétés de la transformation adiabatique, on tire alors~:
\begin{align*}
p_2\cdot V_2&=p_3\cdot V_3\;\Rightarrow\; 5\cdot 0,011^{4/3}=30\cdot V_3^{4/3}\\
V_3^{4/3}&=4,1\cdot 10^{-4}\;\Rightarrow\;V_3=\SI{2,87e-3}{\metre\cubed}
\end{align*}
Par la loi des gaz parfaits, on en tire que~:
\[T_3=\frac{p_3\cdot V_3}{n\cdot R}=\SI{518}{\kelvin}=\SI{245}{\celsius}\]
Le travail est alors~:
\begin{align*}
A&=-\frac{i}{2}\cdot (p_3\cdot V_3-p_2\cdot V_2)\\
&=-\frac{6}{2}\cdot (30\cdot 10^5\cdot 2,87\cdot 10^{-3}-5\cdot 10^5\cdot 0,011)\\
&=\SI{-9330}{\joule}
\end{align*}
Avec pour échange de chaleur et variation d'énergie interne~:
\[Q=0\;\text{et}\;\Delta U=-A=\SI{9330}{\joule}\]
\end{solos}
\end{exos}
\begin{exos}
Une machine thermique cyclique travaille avec un gaz parfait monoatomique qui subit quatre transformations. Le tableau suivant présente les échange d'énergie au cours du cycle.
\begin{center}
\begin{tabular}{|c|c|c|c|}
\hline
Transformation & \(\Delta U\) & \(A\) & \(Q\) \\
& J & J & J \\\hline
1 & 0 & -1109 & ? \\
2 & 7200 & ? & 0 \\
3 & ? & 4436 & 4436 \\
4 & ? & 7200 & ? \\
\hline
\end{tabular}
\end{center}
\smallskip
\begin{enumerate}
\item Complétez le tableau en justifiant vos résultats.
\item Calculez le rendement.
\item Le gaz se trouvant initialement dans l'état : \(V_0=\SI{16}{\deci\metre\cubed}\), \(p_0=\SI{1e5}{\pascal}\) et \(T_0=\SI{400}{\kelvin}\), calculez le produit \(n\cdot R\).
\item Déterminez les températures à la fin des étapes 1, 2 et 3.
\item Faites un diagramme de bilan du cycle.
\end{enumerate}
\begin{solos}
Le tableau complété est le suivant :
\begin{center}
\begin{tabular}{|c|c|c|c|}
\hline
Transformation & \(\Delta U\) & \(A\) & \(Q\) \\
& J & J & J \\\hline
isotherme & 0 & -1109 & -1109 \\
adiabatique & 7200 & -7200 & 0 \\
isotherme & 0 & 4436 & 4436 \\
adiabatique & -7200 & 7200 & 0 \\
\hline
\(\sum\) & 0 & 3327 & \\
\hline
\end{tabular}
\end{center}
\smallskip
\begin{enumerate}
\item Les trois premières lignes sont justifiées par le premier principe. Pour la dernière, on a utilisé le fait que la somme des variations des énergies internes sur un cycle fermé est nulle, puisqu'on se retrouve dans l'état initial. Ainsi :
\[\sum \Delta U = 0 + 7200 + 0 -7200=0\]
\item le rendement est donné par :
\[\eta = \frac{\sum A}{\sum Q_+}=\frac{3327}{4436}=75\%\]
\item La loi des gaz parfaits donne :
\[n\cdot R=\frac{p_0\cdot V_0}{T_0}=\frac{10^5\cdot 16\cdot 10^{-3}}{400}=4\]
\item La température à l'état initial \(T_0=\SI{400}{\kelvin}\) est donnée. La première transformation étant isotherme, on a que \(T_1=\SI{400}{\kelvin}\). Pour la seconde transformation, on peut écrire :
\begin{align*}
\Delta U&=\frac{i}{2}\cdot n\cdot R\cdot \Delta T\\
7200&=\frac{3}{2}\cdot 4\cdot \Delta T\\
\Delta T&=1200=T_2-T_1=T_2-400\\
&\Rightarrow\;T_2=\SI{1600}{\kelvin}
\end{align*}
Et comme la troisième est isotherme, on a : \(T_3=\SI{1600}{\kelvin}\). \item Le diagramme de bilan est donné à la figure \ref{exos:cycle1}.
\end{enumerate}
\begin{figure}
\def\svgwidth{7cm}
\begin{center}
%\input{Annexe-Exercices/Images/cycle2.eps_tex}
\includegraphics[scale=0.9]{cycle2.eps}
\end{center}
\caption{Bilan du cycle\label{exos:cycle1}}
\end{figure}
\end{solos}
\end{exos}
%\begin{exos}
% Un énoncé de test.
% \begin{solos}

View File

@ -2769,6 +2769,120 @@ Les valeurs des c\oe fficients de dilatation thermique sont celles du tableau \r
\end{solos}
\end{exos}
\begin{exos}
On fait passer \SI{32}{\gram} de méthane (\(CH_4\)) de l'état (\SI{1}{\bar} ; \SI{60}{\celsius}) à l'état (\SI{5}{\bar} ; \SI{60}{\celsius}) par une compression isotherme, puis, par une compression adiabatique, à l'état (\SI{30}{\bar} ; ?). Calculez our chaque transformations~:
\begin{enumerate}
\item le travail dépensé,
\item la chaleur échangée avec le milieu extérieur et
\item la variation d'énergie interne.
\end{enumerate}
\begin{solos}
Comme la masse atomique du carbone vaut \SI{12}{uma} et celle de l'hydrogène \SI{1}{uma}, celle de la molécule de méthane (\(CH_4\)) vaut \SI{16}{uma}. Ainsi, sa masse molaire vaut \SI{16}{\gram\per\mol}. Si on a \SI{32}{\gram} de ce gaz, on a donc \SI{2}{\mol} de \(CH_4\).
\subsubsection*{Compression isotherme}
Avec une température de 273 + 60 = \SI{333}{\kelvin}, on peut alors calculer les volumes~:
\begin{align*}
V_1&=\frac{n\cdot R\cdot T}{p_1}=\frac{2\cdot 8,31\cdot 333}{10^5}=\SI{0,055}{\metre\cubed}\\
V_2&=\frac{n\cdot R\cdot T}{p_2}=\frac{2\cdot 8,31\cdot 333}{5\cdot 10^5}=\SI{0,011}{\metre\cubed}
\end{align*}
Le travail isotherme se calcule alors aisément par~:
\begin{align*}
A&=n\cdot R\cdot T\cdot ln(\frac{V_2}{V_1})\\
&=2\cdot 8,31\cdot 333\cdot ln(\frac{0,011}{0,055}=\SI{-8907}{\joule}
\end{align*}
Comme la compression est isotherme, on a aussi~:
\[\Delta U = 0\;\text{et}\;Q=A=\SI{-8907}{\joule}\]
\subsubsection*{Compression adiabatique}
La compression adiabatique se fait de l'état 2 à l'état 3. Comme vu précédemment, le volume de l'état 2 est \(V_2=\SI{0,011}{\metre\cubed}\).
Des propriétés de la transformation adiabatique, on tire alors~:
\begin{align*}
p_2\cdot V_2&=p_3\cdot V_3\;\Rightarrow\; 5\cdot 0,011^{4/3}=30\cdot V_3^{4/3}\\
V_3^{4/3}&=4,1\cdot 10^{-4}\;\Rightarrow\;V_3=\SI{2,87e-3}{\metre\cubed}
\end{align*}
Par la loi des gaz parfaits, on en tire que~:
\[T_3=\frac{p_3\cdot V_3}{n\cdot R}=\SI{518}{\kelvin}=\SI{245}{\celsius}\]
Le travail est alors~:
\begin{align*}
A&=-\frac{i}{2}\cdot (p_3\cdot V_3-p_2\cdot V_2)\\
&=-\frac{6}{2}\cdot (30\cdot 10^5\cdot 2,87\cdot 10^{-3}-5\cdot 10^5\cdot 0,011)\\
&=\SI{-9330}{\joule}
\end{align*}
Avec pour échange de chaleur et variation d'énergie interne~:
\[Q=0\;\text{et}\;\Delta U=-A=\SI{9330}{\joule}\]
\end{solos}
\end{exos}
\begin{exos}
Une machine thermique cyclique travaille avec un gaz parfait monoatomique qui subit quatre transformations. Le tableau suivant présente les échange d'énergie au cours du cycle.
\begin{center}
\begin{tabular}{|c|c|c|c|}
\hline
Transformation & \(\Delta U\) & \(A\) & \(Q\) \\
& J & J & J \\\hline
1 & 0 & -1109 & ? \\
2 & 7200 & ? & 0 \\
3 & ? & 4436 & 4436 \\
4 & ? & 7200 & ? \\
\hline
\end{tabular}
\end{center}
\smallskip
\begin{enumerate}
\item Complétez le tableau en justifiant vos résultats.
\item Calculez le rendement.
\item Le gaz se trouvant initialement dans l'état : \(V_0=\SI{16}{\deci\metre\cubed}\), \(p_0=\SI{1e5}{\pascal}\) et \(T_0=\SI{400}{\kelvin}\), calculez le produit \(n\cdot R\).
\item Déterminez les températures à la fin des étapes 1, 2 et 3.
\item Faites un diagramme de bilan du cycle.
\end{enumerate}
\begin{solos}
Le tableau complété est le suivant :
\begin{center}
\begin{tabular}{|c|c|c|c|}
\hline
Transformation & \(\Delta U\) & \(A\) & \(Q\) \\
& J & J & J \\\hline
isotherme & 0 & -1109 & -1109 \\
adiabatique & 7200 & -7200 & 0 \\
isotherme & 0 & 4436 & 4436 \\
adiabatique & -7200 & 7200 & 0 \\
\hline
\(\sum\) & 0 & 3327 & \\
\hline
\end{tabular}
\end{center}
\smallskip
\begin{enumerate}
\item Les trois premières lignes sont justifiées par le premier principe. Pour la dernière, on a utilisé le fait que la somme des variations des énergies internes sur un cycle fermé est nulle, puisqu'on se retrouve dans l'état initial. Ainsi :
\[\sum \Delta U = 0 + 7200 + 0 -7200=0\]
\item le rendement est donné par :
\[\eta = \frac{\sum A}{\sum Q_+}=\frac{3327}{4436}=75\%\]
\item La loi des gaz parfaits donne :
\[n\cdot R=\frac{p_0\cdot V_0}{T_0}=\frac{10^5\cdot 16\cdot 10^{-3}}{400}=4\]
\item La température à l'état initial \(T_0=\SI{400}{\kelvin}\) est donnée. La première transformation étant isotherme, on a que \(T_1=\SI{400}{\kelvin}\). Pour la seconde transformation, on peut écrire :
\begin{align*}
\Delta U&=\frac{i}{2}\cdot n\cdot R\cdot \Delta T\\
7200&=\frac{3}{2}\cdot 4\cdot \Delta T\\
\Delta T&=1200=T_2-T_1=T_2-400\\
&\Rightarrow\;T_2=\SI{1600}{\kelvin}
\end{align*}
Et comme la troisième est isotherme, on a : \(T_3=\SI{1600}{\kelvin}\). \item Le diagramme de bilan est donné à la figure \ref{exos:cycle1}.
\end{enumerate}
\begin{figure}
\def\svgwidth{7cm}
\begin{center}
\input{Annexe-Exercices/Images/cycle2.eps_tex}
\end{center}
\caption{Bilan du cycle\label{exos:cycle1}}
\end{figure}
\end{solos}
\end{exos}
%\begin{exos}
% Un énoncé de test.
% \begin{solos}

View File

@ -0,0 +1,281 @@
%!PS-Adobe-3.0 EPSF-3.0
%%Creator: cairo 1.16.0 (https://cairographics.org)
%%CreationDate: Sun Nov 13 22:39:13 2022
%%Pages: 1
%%DocumentData: Clean7Bit
%%LanguageLevel: 2
%%BoundingBox: 0 0 221 67
%%EndComments
%%BeginProlog
50 dict begin
/q { gsave } bind def
/Q { grestore } bind def
/cm { 6 array astore concat } bind def
/w { setlinewidth } bind def
/J { setlinecap } bind def
/j { setlinejoin } bind def
/M { setmiterlimit } bind def
/d { setdash } bind def
/m { moveto } bind def
/l { lineto } bind def
/c { curveto } bind def
/h { closepath } bind def
/re { exch dup neg 3 1 roll 5 3 roll moveto 0 rlineto
0 exch rlineto 0 rlineto closepath } bind def
/S { stroke } bind def
/f { fill } bind def
/f* { eofill } bind def
/n { newpath } bind def
/W { clip } bind def
/W* { eoclip } bind def
/BT { } bind def
/ET { } bind def
/BDC { mark 3 1 roll /BDC pdfmark } bind def
/EMC { mark /EMC pdfmark } bind def
/cairo_store_point { /cairo_point_y exch def /cairo_point_x exch def } def
/Tj { show currentpoint cairo_store_point } bind def
/TJ {
{
dup
type /stringtype eq
{ show } { -0.001 mul 0 cairo_font_matrix dtransform rmoveto } ifelse
} forall
currentpoint cairo_store_point
} bind def
/cairo_selectfont { cairo_font_matrix aload pop pop pop 0 0 6 array astore
cairo_font exch selectfont cairo_point_x cairo_point_y moveto } bind def
/Tf { pop /cairo_font exch def /cairo_font_matrix where
{ pop cairo_selectfont } if } bind def
/Td { matrix translate cairo_font_matrix matrix concatmatrix dup
/cairo_font_matrix exch def dup 4 get exch 5 get cairo_store_point
/cairo_font where { pop cairo_selectfont } if } bind def
/Tm { 2 copy 8 2 roll 6 array astore /cairo_font_matrix exch def
cairo_store_point /cairo_font where { pop cairo_selectfont } if } bind def
/g { setgray } bind def
/rg { setrgbcolor } bind def
/d1 { setcachedevice } bind def
/cairo_data_source {
CairoDataIndex CairoData length lt
{ CairoData CairoDataIndex get /CairoDataIndex CairoDataIndex 1 add def }
{ () } ifelse
} def
/cairo_flush_ascii85_file { cairo_ascii85_file status { cairo_ascii85_file flushfile } if } def
/cairo_image { image cairo_flush_ascii85_file } def
/cairo_imagemask { imagemask cairo_flush_ascii85_file } def
%%EndProlog
%%BeginSetup
%%BeginResource: font BitstreamVeraSans-Roman
11 dict begin
/FontType 42 def
/FontName /BitstreamVeraSans-Roman def
/PaintType 0 def
/FontMatrix [ 1 0 0 1 0 0 ] def
/FontBBox [ 0 0 0 0 ] def
/Encoding 256 array def
0 1 255 { Encoding exch /.notdef put } for
Encoding 32 /space put
Encoding 48 /zero put
Encoding 49 /one put
Encoding 50 /two put
Encoding 52 /four put
Encoding 54 /six put
Encoding 65 /A put
Encoding 75 /K put
Encoding 81 /Q put
/CharStrings 10 dict dup begin
/.notdef 0 def
/one 1 def
/six 2 def
/zero 3 def
/space 4 def
/K 5 def
/four 6 def
/Q 7 def
/two 8 def
/A 9 def
end readonly def
/sfnts [
<00010000000900800003001063767420ffd31d3900000770000001fc6670676de7b4f1c40000
096c0000008b676c7966938de21a0000009c000006d468656164dd84a2d0000009f800000036
686865611045076d00000a3000000024686d747831cf04a300000a54000000286c6f636108e6
06f200000a7c000000166d6178700445063a00000a9400000020707265703b07f10000000ab4
0000056800020066fe96046605a400030007001a400c04fb0006fb0108057f0204002fc4d4ec
310010d4ecd4ec301311211125211121660400fc73031bfce5fe96070ef8f2720629000100e1
0000045a05d5000a004b40154203a00402a005810700a009081f061c03001f010b10d4ecc4fc
ec31002fec32f4ecd4ec304b53585922014bb00f5458bd000bffc00001000b000b0040381137
3859b40f030f04025d3721110535253311211521fe014afe990165ca014afca4aa047348b848
fad5aa0000000002008fffe3049605f0000b0024005840241306000d860c00a01606a01c16a5
10a00c8922911c8c250c22091c191e131c03211f1b2510fcececf4ece4310010e4f4e4fce410
ee10ee10ee111239304014cb00cb01cd02cd03cd04cb05cb0607a41eb21e025d015d01220615
141633323635342601152e01232202033e0133320015140023200011100021321602a4889f9f
88889f9f01094c9b4cc8d30f3bb26be10105fef0e2fefdfeee0150011b4c9b033bbaa2a1bbbb
a1a2ba0279b82426fef2feef575dfeefebe6feea018d0179016201a51e00000000020087ffe3
048f05f0000b00170023401306a01200a00c91128c18091c0f1e031c151b1810fcecf4ec3100
10e4f4ec10ee30012202111012333212111002273200111000232200111000028b9c9d9d9c9d
9d9d9dfb0109fef7fbfbfef701090550fecdfeccfecdfecd0133013301340133a0fe73fe86fe
87fe73018d0179017a018d00000100c90000056a05d5000a00ef402808110506050711060605
0311040504021105050442080502030300af09060501040608011c00040b10fcec32d4c41139
31002f3cec321739304b5358071004ed071005ed071005ed071004ed5922b2080301015d4092
140201040209081602280528083702360534084702460543085502670276027705830288058f
0894029b08e702150603090509061b031907050a030a07180328052b062a0736043605360635
07300c41034004450540064007400c62036004680567077705700c8b038b058e068f078f0c9a
039d069d07b603b507c503c507d703d607e803e904e805ea06f703f805f9062c5d71005d7113
33110121090121011123c9ca029e0104fd1b031afef6fd33ca05d5fd890277fd48fce302cffd
3100000000020064000004a405d50002000d008c401d010d030d0003030d4200030b07a00501
038109010c0a001c0608040c0e10dcd43cc4ec32113931002fe4d43cec321239304b53580710
04c9071005c95922014bb00b544bb00d545b58bd000e00400001000e000effc0381137385940
2a0b002a0048005900690077008a000716012b0026012b0336014e014f0c4f0d560166017501
7a0385010d5d005d09012103331133152311231121350306fe0201fe35fed5d5c9fd5e0525fc
e303cdfc33a8fea00160c300000000020073fef805d905f0000b001d0052402a1110020f010c
0d0c0e010d0d0c420f1e0c06951200951891128c0d1e0d1b0f0c0309191b33031915101e10fc
ecfcec1139391139310010c4e4f4ec10ee391239304b5358071005ed071005ed173959220122
001110003332001110001301232706062320001110002120001110020327dcfefd0103dcdc01
01feff3f010af4dd212310fec5fe870179013b013a0178d1054cfeb8fee5fee6feb80148011a
011b0148facffeddef020201a50161016201a5fe5bfe9efefcfe8e00000100960000044a05f0
001c00a54027191a1b03181c11050400110505044210a111940da014910400a00200100a0201
0a1c171003061d10fcc4d4ecc0c011123931002fec32f4ecf4ec304b5358071005ed0705ed11
17395922014bb015544bb016545b4bb014545b58bd001d00400001001d001dffc03811373859
40325504560556077a047a05761b87190704000419041a041b051c74007606751a731b741c82
008619821a821b821ca800a81b115d005d25211521353600373e0135342623220607353e0133
3204151406070600018902c1fc4c73018d33614da7865fd3787ad458e80114455b19fef4aaaa
aa7701913a6d974977964243cc3132e8c25ca5701dfeeb000000000200100000056805d50002
000a00ba404100110100040504021105050401110a030a0011020003030a0711050406110505
040911030a08110a030a4200030795010381090509080706040302010009050a0b10d4c41739
31002f3ce4d4ec1239304b5358071005ed0705ed071005ed0705ed071008ed071005ed071005
ed071008ed5922b2200c01015d403a0f005800760070008c0005070108020603090416011902
56015802500c67016802780176027c0372047707780887018802800c980299039604175d005d
090121013301230321032302bcfeee0225fe7be50239d288fd5f88d5050efd1903aefa2b017f
fe810000013500b800cb00cb00c100aa009c01a600b800660000007100cb00a002b200850075
00b800c301cb0189022d00cb00a600f000d300aa008700cb03aa0400014a003300cb000000d9
050200f4015400b4009c01390114013907060400044e04b4045204b804e704cd0037047304cd
04600473013303a2055605a60556053903c5021200c9001f00b801df007300ba03e9033303bc
0444040e00df03cd03aa00e503aa0404000000cb008f00a4007b00b80014016f007f027b0252
008f00c705cd009a009a006f00cb00cd019e01d300f000ba018300d5009803040248009e01d5
00c100cb00f600830354027f00000333026600d300c700a400cd008f009a0073040005d5010a
00fe022b00a400b4009c00000062009c0000001d032d05d505d505d505f0007f007b005400a4
06b80614072301d300b800cb00a601c301ec069300a000d3035c037103db0185042304a80448
008f0139011401390360008f05d5019a0614072306660179046004600460047b009c00000277
046001aa00e904600762007b00c5007f027b000000b4025205cd006600bc00660077061000cd
013b01850389008f007b0000001d00cd074a042f009c009c0000077d006f0000006f0335006a
006f007b00ae00b2002d0396008f027b00f600830354063705f6008f009c04e10266008f018d
02f600cd03440029006604ee007300001400b6060504030201002c2010b002254964b0405158
20c859212d2cb002254964b040515820c859212d2c20100720b00050b00d7920b8ffff505804
1b0559b0051cb0032508b0042523e120b00050b00d7920b8ffff5058041b0559b0051cb00325
08e12d2c4b505820b0fd454459212d2cb002254560442d2c4b5358b00225b002254544592121
2d2c45442d000001000000020000370e42405f0f3cf5001f080000000000bab9f0b800000000
bac26791fe89fe1d0a4c076d00000008000100000000000000010000076dfe1d00000abcfe89
fe890a4c00010000000000000000000000000000000a04cd0066051700e10517008f05170087
028b0000053f00c905170064064c0073051700960579001000000022006000cc010e010e01a2
0206026c02f0036a000000010000000a004d0007004200040002001000400007000004150568
00030001b8028040fffbfe03fa1403f92503f83203f79603f60e03f5fe03f4fe03f32503f20e
03f19603f02503ef8a4105effe03ee9603ed9603ecfa03ebfa03eafe03e93a03e84203e7fe03
e63203e5e45305e59603e48a4105e45303e3e22f05e3fa03e22f03e1fe03e0fe03df3203de14
03dd9603dcfe03db1203da7d03d9bb03d8fe03d68a4105d67d03d5d44705d57d03d44703d3d2
1b05d3fe03d21b03d1fe03d0fe03cffe03cefe03cd9603cccb1e05ccfe03cb1e03ca3203c9fe
03c6851105c61c03c51603c4fe03c3fe03c2fe03c1fe03c0fe03bffe03befe03bdfe03bcfe03
bbfe03ba1103b9862505b9fe03b8b7bb05b8fe03b7b65d05b7bb03b78004b6b52505b65d40ff
03b64004b52503b4fe03b39603b2fe03b1fe03b0fe03affe03ae6403ad0e03acab2505ac6403
abaa1205ab2503aa1203a98a4105a9fa03a8fe03a7fe03a6fe03a51203a4fe03a3a20e05a332
03a20e03a16403a08a4105a096039ffe039e9d0c059efe039d0c039c9b19059c64039b9a1005
9b19039a1003990a0398fe0397960d0597fe03960d03958a410595960394930e05942803930e
0392fa039190bb0591fe03908f5d0590bb039080048f8e25058f5d038f40048e25038dfe038c
8b2e058cfe038b2e038a8625058a410389880b05891403880b03878625058764038685110586
250385110384fe038382110583fe0382110381fe0380fe037ffe0340ff7e7d7d057efe037d7d
037c64037b5415057b25037afe0379fe03780e03770c03760a0375fe0374fa0373fa0372fa03
71fa0370fe036ffe036efe036c21036bfe036a1142056a530369fe03687d036711420566fe03
65fe0364fe0363fe0362fe03613a0360fa035e0c035dfe035bfe035afe0359580a0559fa0358
0a035716190557320356fe035554150555420354150353011005531803521403514a130551fe
03500b034ffe034e4d10054efe034d10034cfe034b4a13054bfe034a4910054a1303491d0d05
491003480d0347fe0346960345960344fe0343022d0543fa0342bb03414b0340fe033ffe033e
3d12053e14033d3c0f053d12033c3b0d053c40ff0f033b0d033afe0339fe033837140538fa03
3736100537140336350b05361003350b03341e03330d0332310b0532fe03310b03302f0b0530
0d032f0b032e2d09052e10032d09032c32032b2a25052b64032a2912052a2503291203282725
0528410327250326250b05260f03250b0324fe0323fe03220f03210110052112032064031ffa
031e1d0d051e64031d0d031c1142051cfe031bfa031a42031911420519fe0318640317161905
17fe031601100516190315fe0314fe0313fe031211420512fe0311022d05114203107d030f64
030efe030d0c16050dfe030c0110050c16030bfe030a100309fe0308022d0508fe0307140306
64030401100504fe03401503022d0503fe0302011005022d0301100300fe0301b80164858d01
2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b
2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b
2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b
2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b
2b2b2b2b2b2b2b2b2b2b2b2b2b002b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b
2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b
2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b
2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b
2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b1d00>
] def
/f-0-0 currentdict end definefont pop
%%EndResource
%%EndSetup
%%Page: 1 1
%%BeginPageSetup
%%PageBoundingBox: 0 0 221 67
%%EndPageSetup
q 0 0 221 67 rectclip
1 0 0 -1 0 67 cm q
1 0 0 rg
2.834646 w
0 J
0 j
[] 0.0 d
4 M q 1 0 0 1 0 0 cm
1.418 15.453 67 36.262 re S Q
0 0 1 rg
q 1 0 0 1 0 0 cm
152.316 15.453 67 36.262 re S Q
0 g
BT
11.000012 0 0 -11.000012 14.845262 37.588451 Tm
/f-0-0 1 Tf
(1600 K)Tj
14.066635 0 Td
(400 K)Tj
ET
q 1 0 0 1 0 0 cm
132.438 33.586 m 132.438 45.773 122.555 55.656 110.367 55.656 c 98.176
55.656 88.297 45.773 88.297 33.586 c 88.297 21.395 98.176 11.512 110.367
11.512 c 122.555 11.512 132.438 21.395 132.438 33.586 c h
132.438 33.586 m S Q
0.749999 w
q 1 0 0 1 0 0 cm
68.645 33.586 m 88.059 33.586 l S Q
80.559 33.586 m 77.559 36.586 l 88.059 33.586 l 77.559 30.586 l h
80.559 33.586 m f*
0.799999 w
q -1 0 0 -1 0 0 cm
-80.559 -33.586 m -77.559 -36.586 l -88.059 -33.586 l -77.559 -30.586 l
h
-80.559 -33.586 m S Q
0.751181 w
q 1 0 0 1 0 0 cm
132.816 33.586 m 152.23 33.586 l S Q
144.719 33.586 m 141.715 36.59 l 152.23 33.586 l 141.715 30.578 l h
144.719 33.586 m f*
0.80126 w
q -1 0 0 -1 0 0 cm
-144.719 -33.586 m -141.715 -36.59 l -152.23 -33.586 l -141.715 -30.578
l h
-144.719 -33.586 m S Q
0.749999 w
q 1 0 0 1 0 0 cm
123.629 16.52 m 136.855 2.312 l S Q
131.746 7.801 m 131.898 12.039 l 136.855 2.312 l 127.504 7.953 l h
131.746 7.801 m f*
0.585519 w
q -0.931019 1 -1 -0.931019 0 0 cm
-61.526 -74.464 m -59.332 -76.659 l -67.015 -74.464 l -59.329 -72.267 l
h
-61.526 -74.464 m S Q
BT
11.000012 0 0 -11.000012 58.265086 65.154879 Tm
/f-0-0 1 Tf
[(Q1)-4542(Q2)]TJ
7.537069 5.19416 Td
(A)Tj
ET
Q Q
showpage
%%Trailer
end
%%EOF

View File

@ -0,0 +1,202 @@
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<svg
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:cc="http://creativecommons.org/ns#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:svg="http://www.w3.org/2000/svg"
xmlns="http://www.w3.org/2000/svg"
xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
width="210mm"
height="297mm"
viewBox="0 0 210 297"
version="1.1"
id="svg8"
inkscape:version="1.0.2 (e86c870879, 2021-01-15)"
sodipodi:docname="cycle1.svg">
<defs
id="defs2">
<rect
x="59.937914"
y="20.739614"
width="29.029567"
height="5.2362938"
id="rect1321" />
<rect
x="53.837845"
y="41.407631"
width="29.231069"
height="7.3871984"
id="rect1315" />
<rect
x="30.689245"
y="40.896661"
width="35.157742"
height="9.7908561"
id="rect1309" />
<marker
style="overflow:visible;"
id="marker1177"
refX="0.0"
refY="0.0"
orient="auto"
inkscape:stockid="Arrow1Lend"
inkscape:isstock="true">
<path
transform="scale(0.8) rotate(180) translate(12.5,0)"
style="fill-rule:evenodd;stroke:#000000;stroke-width:1pt;stroke-opacity:1;fill:#000000;fill-opacity:1"
d="M 0.0,0.0 L 5.0,-5.0 L -12.5,0.0 L 5.0,5.0 L 0.0,0.0 z "
id="path1175" />
</marker>
<marker
style="overflow:visible;"
id="Arrow1Lend"
refX="0.0"
refY="0.0"
orient="auto"
inkscape:stockid="Arrow1Lend"
inkscape:isstock="true">
<path
transform="scale(0.8) rotate(180) translate(12.5,0)"
style="fill-rule:evenodd;stroke:#000000;stroke-width:1pt;stroke-opacity:1;fill:#000000;fill-opacity:1"
d="M 0.0,0.0 L 5.0,-5.0 L -12.5,0.0 L 5.0,5.0 L 0.0,0.0 z "
id="path896" />
</marker>
<rect
x="65.510159"
y="29.720464"
width="20.666272"
height="7.1284303"
id="rect865" />
<rect
x="12.309253"
y="29.569322"
width="19.645599"
height="7.2931106"
id="rect859" />
<marker
style="overflow:visible"
id="marker1177-7"
refX="0"
refY="0"
orient="auto"
inkscape:stockid="Arrow1Lend"
inkscape:isstock="true">
<path
transform="matrix(-0.8,0,0,-0.8,-10,0)"
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:1pt;stroke-opacity:1"
d="M 0,0 5,-5 -12.5,0 5,5 Z"
id="path1175-5" />
</marker>
</defs>
<sodipodi:namedview
id="base"
pagecolor="#ffffff"
bordercolor="#666666"
borderopacity="1.0"
inkscape:pageopacity="0.0"
inkscape:pageshadow="2"
inkscape:zoom="4.2620719"
inkscape:cx="187.07816"
inkscape:cy="138.2452"
inkscape:document-units="mm"
inkscape:current-layer="layer1"
inkscape:document-rotation="0"
showgrid="false"
inkscape:window-width="1920"
inkscape:window-height="995"
inkscape:window-x="0"
inkscape:window-y="0"
inkscape:window-maximized="1" />
<metadata
id="metadata5">
<rdf:RDF>
<cc:Work
rdf:about="">
<dc:format>image/svg+xml</dc:format>
<dc:type
rdf:resource="http://purl.org/dc/dcmitype/StillImage" />
<dc:title></dc:title>
</cc:Work>
</rdf:RDF>
</metadata>
<g
inkscape:label="Calque 1"
inkscape:groupmode="layer"
id="layer1">
<rect
style="fill:none;stroke:#ff0000;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none"
id="rect835"
width="23.635927"
height="12.791574"
x="10.634826"
y="26.796684" />
<rect
style="fill:none;stroke:#0000ff;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
id="rect835-3"
width="23.635927"
height="12.791574"
x="63.868355"
y="26.796684" />
<text
xml:space="preserve"
id="text857"
style="font-style:normal;font-weight:normal;font-size:3.88056px;line-height:1.25;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;white-space:pre;shape-inside:url(#rect859);fill:#000000;fill-opacity:1;stroke:none;"
transform="translate(3.0633106,1.603302)"><tspan
x="12.308594"
y="33.001745"><tspan>1600 K</tspan></tspan></text>
<text
xml:space="preserve"
id="text863"
style="font-style:normal;font-weight:normal;font-size:3.88056px;line-height:1.25;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;white-space:pre;shape-inside:url(#rect865);fill:#000000;fill-opacity:1;stroke:none;"
transform="translate(4.4485583,1.4509583)"><tspan
x="65.509766"
y="33.154089"><tspan>400 K</tspan></tspan></text>
<circle
style="fill:none;stroke:#000000;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
id="path869"
cx="49.069561"
cy="33.192471"
r="7.7861185" />
<path
style="fill:none;stroke:#000000;stroke-width:0.264583px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;marker-end:url(#marker1177)"
d="m 34.350954,33.192471 h 6.848483"
id="path871" />
<path
style="fill:none;stroke:#000000;stroke-width:0.265;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1;marker-end:url(#Arrow1Lend)"
d="m 56.989999,33.192471 h 6.848483"
id="path871-6" />
<path
style="fill:none;stroke:#000000;stroke-width:0.264583px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;marker-end:url(#marker1177-7)"
d="m 53.748023,27.172559 4.666642,-5.012401"
id="path871-3" />
<text
xml:space="preserve"
id="text1307"
style="font-style:normal;font-weight:normal;font-size:3.88056px;line-height:1.25;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;white-space:pre;shape-inside:url(#rect1309);fill:#000000;fill-opacity:1;stroke:none;" />
<text
xml:space="preserve"
id="text1313"
style="font-style:normal;font-weight:normal;font-size:3.88056px;line-height:1.25;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;white-space:pre;shape-inside:url(#rect1315);fill:#000000;fill-opacity:1;stroke:none;"
transform="translate(0.25492602,-1.1307318)"><tspan
x="53.837891"
y="44.841589"><tspan>Q-=-1109 J</tspan></tspan></text>
<text
xml:space="preserve"
id="text1319"
style="font-style:normal;font-weight:normal;font-size:3.88056px;line-height:1.25;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;white-space:pre;shape-inside:url(#rect1321);fill:#000000;fill-opacity:1;stroke:none;"><tspan
x="59.9375"
y="24.17362"><tspan>A=3327 J</tspan></tspan></text>
<text
xml:space="preserve"
style="font-style:normal;font-weight:normal;font-size:3.88056px;line-height:1.25;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;stroke-width:0.264583"
x="24.18788"
y="43.710857"
id="text1435"><tspan
sodipodi:role="line"
id="tspan1433"
x="24.18788"
y="43.710857"
style="stroke-width:0.264583">Q+=4436 J</tspan></text>
</g>
</svg>

After

Width:  |  Height:  |  Size: 7.3 KiB

View File

@ -0,0 +1,949 @@
%LaTeX with PSTricks extensions
%%Creator: Inkscape 1.0.2 (e86c870879, 2021-01-15)
%%Please note this file requires PSTricks extensions
\psset{xunit=.5pt,yunit=.5pt,runit=.5pt}
\begin{pspicture}(793.7007874,1122.51968504)
{
\newrgbcolor{curcolor}{1 0 0}
\pscustom[linewidth=3.77952756,linecolor=curcolor]
{
\newpath
\moveto(40.19461684,1021.24087837)
\lineto(129.52725508,1021.24087837)
\lineto(129.52725508,972.89477371)
\lineto(40.19461684,972.89477371)
\closepath
}
}
{
\newrgbcolor{curcolor}{0 0 1}
\pscustom[linewidth=3.77952756,linecolor=curcolor]
{
\newpath
\moveto(241.39220711,1021.24087837)
\lineto(330.72484535,1021.24087837)
\lineto(330.72484535,972.89477371)
\lineto(241.39220711,972.89477371)
\closepath
}
}
{
\newrgbcolor{curcolor}{0 0 0}
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
{
\newpath
\moveto(59.91754859,992.946404)
\lineto(62.2808325,992.946404)
\lineto(62.2808325,1001.10331422)
\lineto(59.70986606,1000.58768864)
\lineto(59.70986606,1001.90539845)
\lineto(62.26650957,1002.42102403)
\lineto(63.71312578,1002.42102403)
\lineto(63.71312578,992.946404)
\lineto(66.07640968,992.946404)
\lineto(66.07640968,991.72895471)
\lineto(59.91754859,991.72895471)
\closepath
}
}
{
\newrgbcolor{curcolor}{0 0 0}
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
{
\newpath
\moveto(72.27107821,997.65148742)
\curveto(71.62177192,997.65148742)(71.10614634,997.42948196)(70.72420147,996.98547104)
\curveto(70.3470309,996.54146013)(70.15844562,995.93273548)(70.15844562,995.15929711)
\curveto(70.15844562,994.39063305)(70.3470309,993.78190841)(70.72420147,993.33312318)
\curveto(71.10614634,992.88911227)(71.62177192,992.66710681)(72.27107821,992.66710681)
\curveto(72.92038449,992.66710681)(73.43362292,992.88911227)(73.81079348,993.33312318)
\curveto(74.19273836,993.78190841)(74.38371079,994.39063305)(74.38371079,995.15929711)
\curveto(74.38371079,995.93273548)(74.19273836,996.54146013)(73.81079348,996.98547104)
\curveto(73.43362292,997.42948196)(72.92038449,997.65148742)(72.27107821,997.65148742)
\closepath
\moveto(75.14282623,1002.18469564)
\lineto(75.14282623,1000.86698583)
\curveto(74.7799786,1001.03886102)(74.41235666,1001.17015457)(74.03996041,1001.26086648)
\curveto(73.67233846,1001.35157838)(73.30710368,1001.39693434)(72.94425605,1001.39693434)
\curveto(71.98939386,1001.39693434)(71.25892429,1001.07466835)(70.75284733,1000.43013638)
\curveto(70.25154469,999.7856044)(69.96508603,998.81164497)(69.89347137,997.50825809)
\curveto(70.17515571,997.92362314)(70.52845472,998.24111482)(70.95336839,998.46073312)
\curveto(71.37828206,998.68512573)(71.84616453,998.79732204)(72.3570158,998.79732204)
\curveto(73.43123576,998.79732204)(74.27867595,998.47028174)(74.89933637,997.81620114)
\curveto(75.5247711,997.16689486)(75.83748847,996.28126018)(75.83748847,995.15929711)
\curveto(75.83748847,994.0612056)(75.51283533,993.18034523)(74.86352904,992.51671602)
\curveto(74.21422275,991.8530868)(73.35007248,991.52127219)(72.27107821,991.52127219)
\curveto(71.03453168,991.52127219)(70.08921811,991.99392897)(69.43513752,992.93924253)
\curveto(68.78105692,993.88933041)(68.45401662,995.26433195)(68.45401662,997.06424717)
\curveto(68.45401662,998.75435324)(68.85505874,1000.10070892)(69.65714297,1001.10331422)
\curveto(70.45922721,1002.11069382)(71.53583432,1002.61438363)(72.88696432,1002.61438363)
\curveto(73.24981195,1002.61438363)(73.61504673,1002.57857629)(73.98266867,1002.50696163)
\curveto(74.35506493,1002.43534697)(74.74178411,1002.32792497)(75.14282623,1002.18469564)
\closepath
}
}
{
\newrgbcolor{curcolor}{0 0 0}
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
{
\newpath
\moveto(81.42343235,1001.468549)
\curveto(80.67863984,1001.468549)(80.11765831,1001.10092706)(79.74048775,1000.36568318)
\curveto(79.36809149,999.63521361)(79.18189337,998.53473494)(79.18189337,997.06424717)
\curveto(79.18189337,995.59853372)(79.36809149,994.49805505)(79.74048775,993.76281117)
\curveto(80.11765831,993.0323416)(80.67863984,992.66710681)(81.42343235,992.66710681)
\curveto(82.17299916,992.66710681)(82.7339807,993.0323416)(83.10637695,993.76281117)
\curveto(83.48354751,994.49805505)(83.6721328,995.59853372)(83.6721328,997.06424717)
\curveto(83.6721328,998.53473494)(83.48354751,999.63521361)(83.10637695,1000.36568318)
\curveto(82.7339807,1001.10092706)(82.17299916,1001.468549)(81.42343235,1001.468549)
\closepath
\moveto(81.42343235,1002.61438363)
\curveto(82.62178439,1002.61438363)(83.53606493,1002.13933969)(84.16627398,1001.18925181)
\curveto(84.80125733,1000.24393825)(85.11874901,998.8689367)(85.11874901,997.06424717)
\curveto(85.11874901,995.26433195)(84.80125733,993.88933041)(84.16627398,992.93924253)
\curveto(83.53606493,991.99392897)(82.62178439,991.52127219)(81.42343235,991.52127219)
\curveto(80.22508031,991.52127219)(79.30841261,991.99392897)(78.67342925,992.93924253)
\curveto(78.04322021,993.88933041)(77.72811569,995.26433195)(77.72811569,997.06424717)
\curveto(77.72811569,998.8689367)(78.04322021,1000.24393825)(78.67342925,1001.18925181)
\curveto(79.30841261,1002.13933969)(80.22508031,1002.61438363)(81.42343235,1002.61438363)
\closepath
}
}
{
\newrgbcolor{curcolor}{0 0 0}
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
{
\newpath
\moveto(90.75482405,1001.468549)
\curveto(90.01003155,1001.468549)(89.44905001,1001.10092706)(89.07187945,1000.36568318)
\curveto(88.6994832,999.63521361)(88.51328507,998.53473494)(88.51328507,997.06424717)
\curveto(88.51328507,995.59853372)(88.6994832,994.49805505)(89.07187945,993.76281117)
\curveto(89.44905001,993.0323416)(90.01003155,992.66710681)(90.75482405,992.66710681)
\curveto(91.50439087,992.66710681)(92.0653724,993.0323416)(92.43776865,993.76281117)
\curveto(92.81493922,994.49805505)(93.0035245,995.59853372)(93.0035245,997.06424717)
\curveto(93.0035245,998.53473494)(92.81493922,999.63521361)(92.43776865,1000.36568318)
\curveto(92.0653724,1001.10092706)(91.50439087,1001.468549)(90.75482405,1001.468549)
\closepath
\moveto(90.75482405,1002.61438363)
\curveto(91.95317609,1002.61438363)(92.86745664,1002.13933969)(93.49766568,1001.18925181)
\curveto(94.13264903,1000.24393825)(94.45014071,998.8689367)(94.45014071,997.06424717)
\curveto(94.45014071,995.26433195)(94.13264903,993.88933041)(93.49766568,992.93924253)
\curveto(92.86745664,991.99392897)(91.95317609,991.52127219)(90.75482405,991.52127219)
\curveto(89.55647201,991.52127219)(88.63980431,991.99392897)(88.00482096,992.93924253)
\curveto(87.37461192,993.88933041)(87.05950739,995.26433195)(87.05950739,997.06424717)
\curveto(87.05950739,998.8689367)(87.37461192,1000.24393825)(88.00482096,1001.18925181)
\curveto(88.63980431,1002.13933969)(89.55647201,1002.61438363)(90.75482405,1002.61438363)
\closepath
}
}
{
\newrgbcolor{curcolor}{0 0 0}
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
{
\newpath
\moveto(101.52566802,1002.42102403)
\lineto(102.97228423,1002.42102403)
\lineto(102.97228423,997.90213874)
\lineto(107.77046671,1002.42102403)
\lineto(109.63244797,1002.42102403)
\lineto(104.32580138,997.43664343)
\lineto(110.01200569,991.72895471)
\lineto(108.10705563,991.72895471)
\lineto(102.97228423,996.87804905)
\lineto(102.97228423,991.72895471)
\lineto(101.52566802,991.72895471)
\closepath
}
}
{
\newrgbcolor{curcolor}{0 0 0}
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
{
\newpath
\moveto(269.95238825,1001.16060576)
\lineto(266.30004039,995.45291705)
\lineto(269.95238825,995.45291705)
\closepath
\moveto(269.57283053,1002.42102384)
\lineto(271.39184299,1002.42102384)
\lineto(271.39184299,995.45291705)
\lineto(272.91723533,995.45291705)
\lineto(272.91723533,994.24979069)
\lineto(271.39184299,994.24979069)
\lineto(271.39184299,991.72895452)
\lineto(269.95238825,991.72895452)
\lineto(269.95238825,994.24979069)
\lineto(265.1255599,994.24979069)
\lineto(265.1255599,995.64627664)
\closepath
}
}
{
\newrgbcolor{curcolor}{0 0 0}
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
{
\newpath
\moveto(278.40291868,1001.46854881)
\curveto(277.65812618,1001.46854881)(277.09714464,1001.10092687)(276.71997408,1000.36568299)
\curveto(276.34757783,999.63521342)(276.1613797,998.53473475)(276.1613797,997.06424698)
\curveto(276.1613797,995.59853353)(276.34757783,994.49805486)(276.71997408,993.76281098)
\curveto(277.09714464,993.03234141)(277.65812618,992.66710662)(278.40291868,992.66710662)
\curveto(279.1524855,992.66710662)(279.71346703,993.03234141)(280.08586328,993.76281098)
\curveto(280.46303385,994.49805486)(280.65161913,995.59853353)(280.65161913,997.06424698)
\curveto(280.65161913,998.53473475)(280.46303385,999.63521342)(280.08586328,1000.36568299)
\curveto(279.71346703,1001.10092687)(279.1524855,1001.46854881)(278.40291868,1001.46854881)
\closepath
\moveto(278.40291868,1002.61438344)
\curveto(279.60127072,1002.61438344)(280.51555127,1002.1393395)(281.14576031,1001.18925162)
\curveto(281.78074366,1000.24393806)(282.09823534,998.86893651)(282.09823534,997.06424698)
\curveto(282.09823534,995.26433176)(281.78074366,993.88933022)(281.14576031,992.93924234)
\curveto(280.51555127,991.99392878)(279.60127072,991.521272)(278.40291868,991.521272)
\curveto(277.20456664,991.521272)(276.28789894,991.99392878)(275.65291559,992.93924234)
\curveto(275.02270655,993.88933022)(274.70760202,995.26433176)(274.70760202,997.06424698)
\curveto(274.70760202,998.86893651)(275.02270655,1000.24393806)(275.65291559,1001.18925162)
\curveto(276.28789894,1002.1393395)(277.20456664,1002.61438344)(278.40291868,1002.61438344)
\closepath
}
}
{
\newrgbcolor{curcolor}{0 0 0}
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
{
\newpath
\moveto(287.73430948,1001.46854881)
\curveto(286.98951698,1001.46854881)(286.42853544,1001.10092687)(286.05136488,1000.36568299)
\curveto(285.67896863,999.63521342)(285.4927705,998.53473475)(285.4927705,997.06424698)
\curveto(285.4927705,995.59853353)(285.67896863,994.49805486)(286.05136488,993.76281098)
\curveto(286.42853544,993.03234141)(286.98951698,992.66710662)(287.73430948,992.66710662)
\curveto(288.4838763,992.66710662)(289.04485783,993.03234141)(289.41725408,993.76281098)
\curveto(289.79442465,994.49805486)(289.98300993,995.59853353)(289.98300993,997.06424698)
\curveto(289.98300993,998.53473475)(289.79442465,999.63521342)(289.41725408,1000.36568299)
\curveto(289.04485783,1001.10092687)(288.4838763,1001.46854881)(287.73430948,1001.46854881)
\closepath
\moveto(287.73430948,1002.61438344)
\curveto(288.93266153,1002.61438344)(289.84694207,1002.1393395)(290.47715111,1001.18925162)
\curveto(291.11213446,1000.24393806)(291.42962614,998.86893651)(291.42962614,997.06424698)
\curveto(291.42962614,995.26433176)(291.11213446,993.88933022)(290.47715111,992.93924234)
\curveto(289.84694207,991.99392878)(288.93266153,991.521272)(287.73430948,991.521272)
\curveto(286.53595744,991.521272)(285.61928974,991.99392878)(284.98430639,992.93924234)
\curveto(284.35409735,993.88933022)(284.03899283,995.26433176)(284.03899283,997.06424698)
\curveto(284.03899283,998.86893651)(284.35409735,1000.24393806)(284.98430639,1001.18925162)
\curveto(285.61928974,1002.1393395)(286.53595744,1002.61438344)(287.73430948,1002.61438344)
\closepath
}
}
{
\newrgbcolor{curcolor}{0 0 0}
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
{
\newpath
\moveto(298.50515525,1002.42102384)
\lineto(299.95177146,1002.42102384)
\lineto(299.95177146,997.90213855)
\lineto(304.74995394,1002.42102384)
\lineto(306.6119352,1002.42102384)
\lineto(301.30528861,997.43664324)
\lineto(306.99149292,991.72895452)
\lineto(305.08654286,991.72895452)
\lineto(299.95177146,996.87804886)
\lineto(299.95177146,991.72895452)
\lineto(298.50515525,991.72895452)
\closepath
}
}
{
\newrgbcolor{curcolor}{0 0 0}
\pscustom[linewidth=3.77952756,linecolor=curcolor]
{
\newpath
\moveto(214.8876076,997.06782784)
\curveto(214.8876076,1008.97026906)(207.71770254,1019.7008024)(196.72147785,1024.25541166)
\curveto(185.72527558,1028.81001162)(173.0684439,1026.29166336)(164.65218326,1017.87540271)
\curveto(146.11463014,999.3378496)(159.2405209,967.63997836)(185.45975813,967.63997836)
\curveto(197.36219935,967.63997836)(208.09273268,974.80988343)(212.64734194,985.80610812)
\curveto(217.20194191,996.80231039)(214.68359365,1009.45914206)(206.267333,1017.87540271)
\curveto(197.85107235,1026.29166336)(185.19424067,1028.81001162)(174.19803841,1024.25541166)
\curveto(163.20181371,1019.7008024)(156.03190865,1008.97026906)(156.03190865,997.06782784)
\curveto(156.03190865,970.84859062)(187.72977988,957.72269985)(206.267333,976.26025297)
\curveto(214.68359365,984.67651362)(217.20194191,997.33334529)(212.64734194,1008.32954756)
\curveto(208.09273268,1019.32577226)(197.36219935,1026.49567732)(185.45975813,1026.49567732)
\curveto(159.2405209,1026.49567732)(146.11463014,994.79780609)(164.65218326,976.26025297)
\curveto(183.18973637,957.72269985)(214.8876076,970.84859062)(214.8876076,997.06782784)
\closepath
}
}
{
\newrgbcolor{curcolor}{0 0 0}
\pscustom[linewidth=0.99999871,linecolor=curcolor]
{
\newpath
\moveto(129.83037732,997.06782614)
\lineto(155.71440756,997.06782614)
}
}
{
\newrgbcolor{curcolor}{0 0 0}
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
{
\newpath
\moveto(145.71442047,997.06782614)
\lineto(141.71442564,993.06783131)
\lineto(155.71440756,997.06782614)
\lineto(141.71442564,1001.06782098)
\closepath
}
}
{
\newrgbcolor{curcolor}{0 0 0}
\pscustom[linewidth=1.06666532,linecolor=curcolor]
{
\newpath
\moveto(145.71442047,997.06782614)
\lineto(141.71442564,993.06783131)
\lineto(155.71440756,997.06782614)
\lineto(141.71442564,1001.06782098)
\closepath
}
}
{
\newrgbcolor{curcolor}{0 0 0}
\pscustom[linewidth=1.00157475,linecolor=curcolor]
{
\newpath
\moveto(215.39527181,997.06782614)
\lineto(241.27930205,997.06782614)
}
}
{
\newrgbcolor{curcolor}{0 0 0}
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
{
\newpath
\moveto(231.26355456,997.06782614)
\lineto(227.25725556,993.06152715)
\lineto(241.27930205,997.06782614)
\lineto(227.25725556,1001.07412514)
\closepath
}
}
{
\newrgbcolor{curcolor}{0 0 0}
\pscustom[linewidth=1.06834643,linecolor=curcolor]
{
\newpath
\moveto(231.26355456,997.06782614)
\lineto(227.25725556,993.06152715)
\lineto(241.27930205,997.06782614)
\lineto(227.25725556,1001.07412514)
\closepath
}
}
{
\newrgbcolor{curcolor}{0 0 0}
\pscustom[linewidth=0.99999871,linecolor=curcolor]
{
\newpath
\moveto(203.14213417,1019.82024945)
\lineto(220.77983622,1038.76475717)
}
}
{
\newrgbcolor{curcolor}{0 0 0}
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
{
\newpath
\moveto(213.96571932,1031.4457714)
\lineto(214.16766687,1025.79253034)
\lineto(220.77983622,1038.76475717)
\lineto(208.31247826,1031.24382386)
\closepath
}
}
{
\newrgbcolor{curcolor}{0 0 0}
\pscustom[linewidth=1.06666532,linecolor=curcolor]
{
\newpath
\moveto(213.96571932,1031.4457714)
\lineto(214.16766687,1025.79253034)
\lineto(220.77983622,1038.76475717)
\lineto(208.31247826,1031.24382386)
\closepath
}
}
{
\newrgbcolor{curcolor}{0 0 0}
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
{
\newpath
\moveto(210.22459463,967.02424348)
\curveto(209.17424623,967.02424348)(208.33874182,966.63274999)(207.7180814,965.849763)
\curveto(207.10219529,965.066776)(206.79425223,963.99971751)(206.79425223,962.64858752)
\curveto(206.79425223,961.30223184)(207.10219529,960.2375605)(207.7180814,959.45457351)
\curveto(208.33874182,958.67158652)(209.17424623,958.28009302)(210.22459463,958.28009302)
\curveto(211.27494304,958.28009302)(212.10567314,958.67158652)(212.71678494,959.45457351)
\curveto(213.33267105,960.2375605)(213.6406141,961.30223184)(213.6406141,962.64858752)
\curveto(213.6406141,963.99971751)(213.33267105,965.066776)(212.71678494,965.849763)
\curveto(212.10567314,966.63274999)(211.27494304,967.02424348)(210.22459463,967.02424348)
\closepath
\moveto(212.25128962,957.50665465)
\lineto(214.15623968,955.42266793)
\lineto(212.40884188,955.42266793)
\lineto(210.82615781,957.1342584)
\curveto(210.66860555,957.12470978)(210.54686062,957.11754831)(210.46092302,957.112774)
\curveto(210.37975974,957.10799969)(210.30098361,957.10561253)(210.22459463,957.10561253)
\curveto(208.72068669,957.10561253)(207.51756034,957.60691518)(206.61521557,958.60952048)
\curveto(205.71764512,959.61690008)(205.26885989,960.96325576)(205.26885989,962.64858752)
\curveto(205.26885989,964.33869359)(205.71764512,965.68504927)(206.61521557,966.68765456)
\curveto(207.51756034,967.69503417)(208.72068669,968.19872397)(210.22459463,968.19872397)
\curveto(211.72372826,968.19872397)(212.92208031,967.69503417)(213.81965076,966.68765456)
\curveto(214.71722122,965.68504927)(215.16600644,964.33869359)(215.16600644,962.64858752)
\curveto(215.16600644,961.40726668)(214.91535512,960.3449825)(214.41405247,959.46173498)
\curveto(213.91752414,958.57848745)(213.19660319,957.92679401)(212.25128962,957.50665465)
\closepath
}
}
{
\newrgbcolor{curcolor}{0 0 0}
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
{
\newpath
\moveto(217.11392581,961.91811795)
\lineto(220.9739562,961.91811795)
\lineto(220.9739562,960.74363746)
\lineto(217.11392581,960.74363746)
\closepath
}
}
{
\newrgbcolor{curcolor}{0 0 0}
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
{
\newpath
\moveto(223.24414123,963.9734588)
\lineto(232.42514115,963.9734588)
\lineto(232.42514115,962.77033245)
\lineto(223.24414123,962.77033245)
\closepath
\moveto(223.24414123,961.05158051)
\lineto(232.42514115,961.05158051)
\lineto(232.42514115,959.83413123)
\lineto(223.24414123,959.83413123)
\closepath
}
}
{
\newrgbcolor{curcolor}{0 0 0}
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
{
\newpath
\moveto(234.69532634,961.91811795)
\lineto(238.55535673,961.91811795)
\lineto(238.55535673,960.74363746)
\lineto(234.69532634,960.74363746)
\closepath
}
}
{
\newrgbcolor{curcolor}{0 0 0}
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
{
\newpath
\moveto(241.09051693,958.53074434)
\lineto(243.45380083,958.53074434)
\lineto(243.45380083,966.68765456)
\lineto(240.8828344,966.17202898)
\lineto(240.8828344,967.4897388)
\lineto(243.4394779,968.00536438)
\lineto(244.88609411,968.00536438)
\lineto(244.88609411,958.53074434)
\lineto(247.24937802,958.53074434)
\lineto(247.24937802,957.31329506)
\lineto(241.09051693,957.31329506)
\closepath
}
}
{
\newrgbcolor{curcolor}{0 0 0}
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
{
\newpath
\moveto(250.42190683,958.53074434)
\lineto(252.78519073,958.53074434)
\lineto(252.78519073,966.68765456)
\lineto(250.2142243,966.17202898)
\lineto(250.2142243,967.4897388)
\lineto(252.7708678,968.00536438)
\lineto(254.21748401,968.00536438)
\lineto(254.21748401,958.53074434)
\lineto(256.58076792,958.53074434)
\lineto(256.58076792,957.31329506)
\lineto(250.42190683,957.31329506)
\closepath
}
}
{
\newrgbcolor{curcolor}{0 0 0}
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
{
\newpath
\moveto(262.59639888,967.05288935)
\curveto(261.85160638,967.05288935)(261.29062484,966.68526741)(260.91345428,965.95002353)
\curveto(260.54105803,965.21955395)(260.3548599,964.11907528)(260.3548599,962.64858752)
\curveto(260.3548599,961.18287406)(260.54105803,960.0823954)(260.91345428,959.34715151)
\curveto(261.29062484,958.61668194)(261.85160638,958.25144716)(262.59639888,958.25144716)
\curveto(263.3459657,958.25144716)(263.90694723,958.61668194)(264.27934348,959.34715151)
\curveto(264.65651405,960.0823954)(264.84509933,961.18287406)(264.84509933,962.64858752)
\curveto(264.84509933,964.11907528)(264.65651405,965.21955395)(264.27934348,965.95002353)
\curveto(263.90694723,966.68526741)(263.3459657,967.05288935)(262.59639888,967.05288935)
\closepath
\moveto(262.59639888,968.19872397)
\curveto(263.79475093,968.19872397)(264.70903147,967.72368003)(265.33924051,966.77359216)
\curveto(265.97422386,965.8282786)(266.29171554,964.45327705)(266.29171554,962.64858752)
\curveto(266.29171554,960.8486723)(265.97422386,959.47367075)(265.33924051,958.52358288)
\curveto(264.70903147,957.57826932)(263.79475093,957.10561253)(262.59639888,957.10561253)
\curveto(261.39804684,957.10561253)(260.48137914,957.57826932)(259.84639579,958.52358288)
\curveto(259.21618675,959.47367075)(258.90108223,960.8486723)(258.90108223,962.64858752)
\curveto(258.90108223,964.45327705)(259.21618675,965.8282786)(259.84639579,966.77359216)
\curveto(260.48137914,967.72368003)(261.39804684,968.19872397)(262.59639888,968.19872397)
\closepath
}
}
{
\newrgbcolor{curcolor}{0 0 0}
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
{
\newpath
\moveto(268.87700771,957.53530052)
\lineto(268.87700771,958.85301033)
\curveto(269.23985534,958.68113514)(269.60747728,958.54984159)(269.97987353,958.45912968)
\curveto(270.35226978,958.36841777)(270.71750457,958.32306182)(271.07557789,958.32306182)
\curveto(272.03044007,958.32306182)(272.75852249,958.64294065)(273.25982514,959.28269832)
\curveto(273.76590209,959.92723029)(274.05474791,960.90357688)(274.12636257,962.21173807)
\curveto(273.84945254,961.80114733)(273.49854068,961.48604281)(273.07362701,961.26642451)
\curveto(272.64871334,961.0468062)(272.17844371,960.93699705)(271.66281813,960.93699705)
\curveto(270.59337248,960.93699705)(269.74593229,961.25926304)(269.12049756,961.90379501)
\curveto(268.49983714,962.5531013)(268.18950693,963.43873598)(268.18950693,964.56069905)
\curveto(268.18950693,965.65879056)(268.51416008,966.53965092)(269.16346636,967.20328014)
\curveto(269.81277265,967.86690936)(270.67692292,968.19872397)(271.75591719,968.19872397)
\curveto(272.99246372,968.19872397)(273.93539013,967.72368003)(274.58469642,966.77359216)
\curveto(275.23877702,965.8282786)(275.56581731,964.45327705)(275.56581731,962.64858752)
\curveto(275.56581731,960.96325576)(275.1647752,959.61690008)(274.36269096,958.60952048)
\curveto(273.56538104,957.60691518)(272.49116108,957.10561253)(271.14003108,957.10561253)
\curveto(270.77718345,957.10561253)(270.40956151,957.14141987)(270.03716526,957.21303453)
\curveto(269.66476901,957.28464919)(269.27804982,957.39207119)(268.87700771,957.53530052)
\closepath
\moveto(271.75591719,962.06850874)
\curveto(272.40522348,962.06850874)(272.91846191,962.2905142)(273.29563247,962.73452512)
\curveto(273.67757734,963.17853603)(273.86854978,963.78726068)(273.86854978,964.56069905)
\curveto(273.86854978,965.3293631)(273.67757734,965.93570059)(273.29563247,966.37971151)
\curveto(272.91846191,966.82849674)(272.40522348,967.05288935)(271.75591719,967.05288935)
\curveto(271.10661091,967.05288935)(270.59098533,966.82849674)(270.20904045,966.37971151)
\curveto(269.83186989,965.93570059)(269.64328461,965.3293631)(269.64328461,964.56069905)
\curveto(269.64328461,963.78726068)(269.83186989,963.17853603)(270.20904045,962.73452512)
\curveto(270.59098533,962.2905142)(271.10661091,962.06850874)(271.75591719,962.06850874)
\closepath
}
}
{
\newrgbcolor{curcolor}{0 0 0}
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
{
\newpath
\moveto(282.69863635,968.00536438)
\lineto(284.14525256,968.00536438)
\lineto(284.14525256,958.05808756)
\curveto(284.14525256,956.76902361)(283.89937555,955.83325867)(283.40762153,955.25079274)
\curveto(282.92064181,954.66832681)(282.13526766,954.37709384)(281.05149908,954.37709384)
\lineto(280.50006617,954.37709384)
\lineto(280.50006617,955.59454312)
\lineto(280.95123855,955.59454312)
\curveto(281.59099622,955.59454312)(282.0421686,955.77357978)(282.3047557,956.1316531)
\curveto(282.5673428,956.48972642)(282.69863635,957.13187124)(282.69863635,958.05808756)
\closepath
}
}
{
\newrgbcolor{curcolor}{0 0 0}
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
{
\newpath
\moveto(231.54845954,1040.42175805)
\lineto(229.58621775,1035.10078852)
\lineto(233.5178628,1035.10078852)
\closepath
\moveto(230.73205238,1041.84688986)
\lineto(232.37202818,1041.84688986)
\lineto(236.44690255,1031.15482054)
\lineto(234.94299461,1031.15482054)
\lineto(233.96903518,1033.89766217)
\lineto(229.1493683,1033.89766217)
\lineto(228.17540887,1031.15482054)
\lineto(226.65001653,1031.15482054)
\closepath
}
}
{
\newrgbcolor{curcolor}{0 0 0}
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
{
\newpath
\moveto(238.12268588,1037.81498428)
\lineto(247.30368579,1037.81498428)
\lineto(247.30368579,1036.61185793)
\lineto(238.12268588,1036.61185793)
\closepath
\moveto(238.12268588,1034.89310599)
\lineto(247.30368579,1034.89310599)
\lineto(247.30368579,1033.67565671)
\lineto(238.12268588,1033.67565671)
\closepath
}
}
{
\newrgbcolor{curcolor}{0 0 0}
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
{
\newpath
\moveto(254.80890202,1036.91980098)
\curveto(255.5011771,1036.77179734)(256.04067424,1036.46385429)(256.42739342,1035.99597182)
\curveto(256.81888692,1035.52808935)(257.01463366,1034.95039773)(257.01463366,1034.26289695)
\curveto(257.01463366,1033.20777424)(256.65178603,1032.39136707)(255.92609077,1031.81367545)
\curveto(255.20039551,1031.23598382)(254.16914435,1030.94713801)(252.83233729,1030.94713801)
\curveto(252.38355207,1030.94713801)(251.92044391,1030.99249397)(251.44301281,1031.08320587)
\curveto(250.97035603,1031.16914347)(250.48098916,1031.30043702)(249.9749122,1031.47708653)
\lineto(249.9749122,1032.87357247)
\curveto(250.37595432,1032.63963124)(250.81519093,1032.46298173)(251.29262202,1032.34362396)
\curveto(251.77005311,1032.22426619)(252.2689686,1032.1645873)(252.78936849,1032.1645873)
\curveto(253.69648757,1032.1645873)(254.3863755,1032.34362396)(254.85903228,1032.70169728)
\curveto(255.33646337,1033.0597706)(255.57517892,1033.58017049)(255.57517892,1034.26289695)
\curveto(255.57517892,1034.89310599)(255.35317346,1035.38486002)(254.90916255,1035.73815903)
\curveto(254.46992594,1036.09623235)(253.85642699,1036.27526901)(253.06866568,1036.27526901)
\lineto(251.82257053,1036.27526901)
\lineto(251.82257053,1037.46407243)
\lineto(253.12595741,1037.46407243)
\curveto(253.83732974,1037.46407243)(254.38160119,1037.6049146)(254.75877175,1037.88659895)
\curveto(255.13594232,1038.1730576)(255.3245276,1038.58364834)(255.3245276,1039.11837116)
\curveto(255.3245276,1039.66741692)(255.12878085,1040.08755628)(254.73728735,1040.37878925)
\curveto(254.35056817,1040.67479653)(253.79436094,1040.82280017)(253.06866568,1040.82280017)
\curveto(252.67239788,1040.82280017)(252.2474842,1040.77983137)(251.79392467,1040.69389377)
\curveto(251.34036513,1040.60795617)(250.84144964,1040.47427547)(250.29717819,1040.29285165)
\lineto(250.29717819,1041.5819156)
\curveto(250.84622395,1041.73469355)(251.35946237,1041.84927701)(251.83689346,1041.92566599)
\curveto(252.31909887,1042.00205496)(252.77265841,1042.04024945)(253.19757208,1042.04024945)
\curveto(254.29566359,1042.04024945)(255.16458818,1041.78959813)(255.80434584,1041.28829548)
\curveto(256.44410351,1040.79176714)(256.76398234,1040.1185893)(256.76398234,1039.26876196)
\curveto(256.76398234,1038.6767474)(256.5944943,1038.17544476)(256.25551823,1037.76485402)
\curveto(255.91654215,1037.35903759)(255.43433675,1037.07735324)(254.80890202,1036.91980098)
\closepath
}
}
{
\newrgbcolor{curcolor}{0 0 0}
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
{
\newpath
\moveto(264.14029192,1036.91980098)
\curveto(264.832567,1036.77179734)(265.37206414,1036.46385429)(265.75878332,1035.99597182)
\curveto(266.15027682,1035.52808935)(266.34602356,1034.95039773)(266.34602356,1034.26289695)
\curveto(266.34602356,1033.20777424)(265.98317593,1032.39136707)(265.25748067,1031.81367545)
\curveto(264.53178541,1031.23598382)(263.50053425,1030.94713801)(262.16372719,1030.94713801)
\curveto(261.71494197,1030.94713801)(261.25183381,1030.99249397)(260.77440271,1031.08320587)
\curveto(260.30174593,1031.16914347)(259.81237906,1031.30043702)(259.3063021,1031.47708653)
\lineto(259.3063021,1032.87357247)
\curveto(259.70734422,1032.63963124)(260.14658083,1032.46298173)(260.62401192,1032.34362396)
\curveto(261.10144301,1032.22426619)(261.6003585,1032.1645873)(262.12075839,1032.1645873)
\curveto(263.02787747,1032.1645873)(263.7177654,1032.34362396)(264.19042218,1032.70169728)
\curveto(264.66785327,1033.0597706)(264.90656882,1033.58017049)(264.90656882,1034.26289695)
\curveto(264.90656882,1034.89310599)(264.68456336,1035.38486002)(264.24055245,1035.73815903)
\curveto(263.80131584,1036.09623235)(263.18781689,1036.27526901)(262.40005558,1036.27526901)
\lineto(261.15396043,1036.27526901)
\lineto(261.15396043,1037.46407243)
\lineto(262.45734732,1037.46407243)
\curveto(263.16871964,1037.46407243)(263.71299109,1037.6049146)(264.09016165,1037.88659895)
\curveto(264.46733222,1038.1730576)(264.6559175,1038.58364834)(264.6559175,1039.11837116)
\curveto(264.6559175,1039.66741692)(264.46017075,1040.08755628)(264.06867725,1040.37878925)
\curveto(263.68195807,1040.67479653)(263.12575084,1040.82280017)(262.40005558,1040.82280017)
\curveto(262.00378778,1040.82280017)(261.5788741,1040.77983137)(261.12531457,1040.69389377)
\curveto(260.67175503,1040.60795617)(260.17283954,1040.47427547)(259.62856809,1040.29285165)
\lineto(259.62856809,1041.5819156)
\curveto(260.17761385,1041.73469355)(260.69085227,1041.84927701)(261.16828336,1041.92566599)
\curveto(261.65048877,1042.00205496)(262.10404831,1042.04024945)(262.52896198,1042.04024945)
\curveto(263.62705349,1042.04024945)(264.49597808,1041.78959813)(265.13573575,1041.28829548)
\curveto(265.77549341,1040.79176714)(266.09537224,1040.1185893)(266.09537224,1039.26876196)
\curveto(266.09537224,1038.6767474)(265.9258842,1038.17544476)(265.58690813,1037.76485402)
\curveto(265.24793205,1037.35903759)(264.76572665,1037.07735324)(264.14029192,1036.91980098)
\closepath
}
}
{
\newrgbcolor{curcolor}{0 0 0}
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
{
\newpath
\moveto(270.33496314,1032.37226983)
\lineto(275.38379695,1032.37226983)
\lineto(275.38379695,1031.15482054)
\lineto(268.59472681,1031.15482054)
\lineto(268.59472681,1032.37226983)
\curveto(269.14377257,1032.94041283)(269.89095223,1033.70191542)(270.83626579,1034.6567776)
\curveto(271.78635366,1035.6164141)(272.38314253,1036.23468736)(272.62663239,1036.5115974)
\curveto(273.08974055,1037.03199729)(273.41200653,1037.47123389)(273.59343035,1037.82930721)
\curveto(273.77962848,1038.19215484)(273.87272754,1038.54784101)(273.87272754,1038.89636571)
\curveto(273.87272754,1039.46450871)(273.67220648,1039.92761687)(273.27116436,1040.28569019)
\curveto(272.87489656,1040.64376351)(272.35688382,1040.82280017)(271.71712616,1040.82280017)
\curveto(271.26356662,1040.82280017)(270.78374837,1040.74402404)(270.27767141,1040.58647177)
\curveto(269.77636876,1040.42891951)(269.23925878,1040.19020397)(268.66634147,1039.87032514)
\lineto(268.66634147,1041.33126428)
\curveto(269.24880741,1041.56520551)(269.79307885,1041.74185502)(270.29915581,1041.86121279)
\curveto(270.80523277,1041.98057057)(271.26834093,1042.04024945)(271.68848029,1042.04024945)
\curveto(272.79612043,1042.04024945)(273.67936795,1041.76333942)(274.33822285,1041.20951935)
\curveto(274.99707776,1040.65569928)(275.32650522,1039.91568109)(275.32650522,1038.98946477)
\curveto(275.32650522,1038.55022816)(275.24295478,1038.13247596)(275.07585389,1037.73620815)
\curveto(274.91352732,1037.34471466)(274.61513289,1036.8816065)(274.18067059,1036.34688367)
\curveto(274.06131282,1036.20842865)(273.6817551,1035.80738654)(273.04199744,1035.14375732)
\curveto(272.40223977,1034.48490241)(271.49989501,1033.56107325)(270.33496314,1032.37226983)
\closepath
}
}
{
\newrgbcolor{curcolor}{0 0 0}
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
{
\newpath
\moveto(278.05502311,1041.84688986)
\lineto(284.93003084,1041.84688986)
\lineto(284.93003084,1041.23100375)
\lineto(281.04851606,1031.15482054)
\lineto(279.53744665,1031.15482054)
\lineto(283.18979451,1040.62944057)
\lineto(278.05502311,1040.62944057)
\closepath
}
}
{
\newrgbcolor{curcolor}{0 0 0}
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
{
\newpath
\moveto(292.28485894,1041.84688986)
\lineto(293.73147515,1041.84688986)
\lineto(293.73147515,1031.89961304)
\curveto(293.73147515,1030.61054909)(293.48559814,1029.67478415)(292.99384411,1029.09231822)
\curveto(292.5068644,1028.50985229)(291.72149025,1028.21861932)(290.63772167,1028.21861932)
\lineto(290.08628876,1028.21861932)
\lineto(290.08628876,1029.43606861)
\lineto(290.53746114,1029.43606861)
\curveto(291.17721881,1029.43606861)(291.62839119,1029.61510527)(291.89097829,1029.97317858)
\curveto(292.15356539,1030.3312519)(292.28485894,1030.97339672)(292.28485894,1031.89961304)
\closepath
}
}
{
\newrgbcolor{curcolor}{0 0 0}
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
{
\newpath
\moveto(97.19806078,967.02424332)
\curveto(96.14771237,967.02424332)(95.31220796,966.63274983)(94.69154754,965.84976284)
\curveto(94.07566143,965.06677584)(93.76771838,963.99971735)(93.76771838,962.64858736)
\curveto(93.76771838,961.30223168)(94.07566143,960.23756034)(94.69154754,959.45457335)
\curveto(95.31220796,958.67158636)(96.14771237,958.28009286)(97.19806078,958.28009286)
\curveto(98.24840918,958.28009286)(99.07913928,958.67158636)(99.69025108,959.45457335)
\curveto(100.30613719,960.23756034)(100.61408025,961.30223168)(100.61408025,962.64858736)
\curveto(100.61408025,963.99971735)(100.30613719,965.06677584)(99.69025108,965.84976284)
\curveto(99.07913928,966.63274983)(98.24840918,967.02424332)(97.19806078,967.02424332)
\closepath
\moveto(99.22475577,957.50665449)
\lineto(101.12970583,955.42266777)
\lineto(99.38230803,955.42266777)
\lineto(97.79962395,957.13425824)
\curveto(97.64207169,957.12470962)(97.52032677,957.11754815)(97.43438917,957.11277384)
\curveto(97.35322588,957.10799953)(97.27444975,957.10561237)(97.19806078,957.10561237)
\curveto(95.69415284,957.10561237)(94.49102648,957.60691502)(93.58868172,958.60952032)
\curveto(92.69111126,959.61689992)(92.24232604,960.9632556)(92.24232604,962.64858736)
\curveto(92.24232604,964.33869343)(92.69111126,965.68504911)(93.58868172,966.6876544)
\curveto(94.49102648,967.69503401)(95.69415284,968.19872381)(97.19806078,968.19872381)
\curveto(98.69719441,968.19872381)(99.89554645,967.69503401)(100.79311691,966.6876544)
\curveto(101.69068736,965.68504911)(102.13947259,964.33869343)(102.13947259,962.64858736)
\curveto(102.13947259,961.40726652)(101.88882126,960.34498234)(101.38751862,959.46173482)
\curveto(100.89099028,958.57848729)(100.17006933,957.92679385)(99.22475577,957.50665449)
\closepath
}
}
{
\newrgbcolor{curcolor}{0 0 0}
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
{
\newpath
\moveto(109.70914221,966.50861774)
\lineto(109.70914221,962.51968096)
\lineto(113.69807899,962.51968096)
\lineto(113.69807899,961.30223168)
\lineto(109.70914221,961.30223168)
\lineto(109.70914221,957.3132949)
\lineto(108.50601586,957.3132949)
\lineto(108.50601586,961.30223168)
\lineto(104.51707908,961.30223168)
\lineto(104.51707908,962.51968096)
\lineto(108.50601586,962.51968096)
\lineto(108.50601586,966.50861774)
\closepath
}
}
{
\newrgbcolor{curcolor}{0 0 0}
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
{
\newpath
\moveto(116.80615666,963.97345864)
\lineto(125.98715657,963.97345864)
\lineto(125.98715657,962.77033229)
\lineto(116.80615666,962.77033229)
\closepath
\moveto(116.80615666,961.05158035)
\lineto(125.98715657,961.05158035)
\lineto(125.98715657,959.83413107)
\lineto(116.80615666,959.83413107)
\closepath
}
}
{
\newrgbcolor{curcolor}{0 0 0}
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
{
\newpath
\moveto(133.08417011,966.74494613)
\lineto(129.43182225,961.03725742)
\lineto(133.08417011,961.03725742)
\closepath
\moveto(132.70461239,968.00536422)
\lineto(134.52362486,968.00536422)
\lineto(134.52362486,961.03725742)
\lineto(136.0490172,961.03725742)
\lineto(136.0490172,959.83413107)
\lineto(134.52362486,959.83413107)
\lineto(134.52362486,957.3132949)
\lineto(133.08417011,957.3132949)
\lineto(133.08417011,959.83413107)
\lineto(128.25734177,959.83413107)
\lineto(128.25734177,961.23061701)
\closepath
}
}
{
\newrgbcolor{curcolor}{0 0 0}
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
{
\newpath
\moveto(142.41556001,966.74494613)
\lineto(138.76321215,961.03725742)
\lineto(142.41556001,961.03725742)
\closepath
\moveto(142.03600229,968.00536422)
\lineto(143.85501476,968.00536422)
\lineto(143.85501476,961.03725742)
\lineto(145.3804071,961.03725742)
\lineto(145.3804071,959.83413107)
\lineto(143.85501476,959.83413107)
\lineto(143.85501476,957.3132949)
\lineto(142.41556001,957.3132949)
\lineto(142.41556001,959.83413107)
\lineto(137.58873167,959.83413107)
\lineto(137.58873167,961.23061701)
\closepath
}
}
{
\newrgbcolor{curcolor}{0 0 0}
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
{
\newpath
\moveto(152.1551535,963.07827534)
\curveto(152.84742858,962.9302717)(153.38692572,962.62232865)(153.7736449,962.15444618)
\curveto(154.1651384,961.68656371)(154.36088514,961.10887209)(154.36088514,960.42137131)
\curveto(154.36088514,959.3662486)(153.99803751,958.54984143)(153.27234225,957.97214981)
\curveto(152.54664699,957.39445818)(151.51539583,957.10561237)(150.17858877,957.10561237)
\curveto(149.72980355,957.10561237)(149.26669539,957.15096833)(148.78926429,957.24168023)
\curveto(148.31660751,957.32761783)(147.82724064,957.45891138)(147.32116368,957.63556089)
\lineto(147.32116368,959.03204683)
\curveto(147.7222058,958.7981056)(148.16144241,958.62145609)(148.6388735,958.50209832)
\curveto(149.11630459,958.38274055)(149.61522008,958.32306166)(150.13561997,958.32306166)
\curveto(151.04273905,958.32306166)(151.73262698,958.50209832)(152.20528376,958.86017164)
\curveto(152.68271485,959.21824496)(152.9214304,959.73864485)(152.9214304,960.42137131)
\curveto(152.9214304,961.05158035)(152.69942494,961.54333438)(152.25541403,961.89663339)
\curveto(151.81617742,962.25470671)(151.20267847,962.43374337)(150.41491716,962.43374337)
\lineto(149.16882201,962.43374337)
\lineto(149.16882201,963.62254679)
\lineto(150.4722089,963.62254679)
\curveto(151.18358122,963.62254679)(151.72785267,963.76338896)(152.10502323,964.04507331)
\curveto(152.4821938,964.33153196)(152.67077908,964.7421227)(152.67077908,965.27684552)
\curveto(152.67077908,965.82589128)(152.47503233,966.24603064)(152.08353883,966.53726361)
\curveto(151.69681965,966.83327089)(151.14061242,966.98127453)(150.41491716,966.98127453)
\curveto(150.01864936,966.98127453)(149.59373568,966.93830573)(149.14017615,966.85236813)
\curveto(148.68661661,966.76643053)(148.18770112,966.63274983)(147.64342967,966.45132601)
\lineto(147.64342967,967.74038996)
\curveto(148.19247543,967.89316791)(148.70571385,968.00775137)(149.18314494,968.08414035)
\curveto(149.66535035,968.16052932)(150.11890989,968.19872381)(150.54382356,968.19872381)
\curveto(151.64191507,968.19872381)(152.51083966,967.94807249)(153.15059732,967.44676984)
\curveto(153.79035499,966.9502415)(154.11023382,966.27706366)(154.11023382,965.42723632)
\curveto(154.11023382,964.83522176)(153.94074578,964.33391912)(153.60176971,963.92332838)
\curveto(153.26279363,963.51751195)(152.78058823,963.2358276)(152.1551535,963.07827534)
\closepath
}
}
{
\newrgbcolor{curcolor}{0 0 0}
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
{
\newpath
\moveto(160.37651611,963.2358276)
\curveto(159.72720982,963.2358276)(159.21158424,963.01382215)(158.82963937,962.56981123)
\curveto(158.4524688,962.12580031)(158.26388352,961.51707567)(158.26388352,960.7436373)
\curveto(158.26388352,959.97497324)(158.4524688,959.3662486)(158.82963937,958.91746337)
\curveto(159.21158424,958.47345245)(159.72720982,958.251447)(160.37651611,958.251447)
\curveto(161.02582239,958.251447)(161.53906082,958.47345245)(161.91623138,958.91746337)
\curveto(162.29817625,959.3662486)(162.48914869,959.97497324)(162.48914869,960.7436373)
\curveto(162.48914869,961.51707567)(162.29817625,962.12580031)(161.91623138,962.56981123)
\curveto(161.53906082,963.01382215)(161.02582239,963.2358276)(160.37651611,963.2358276)
\closepath
\moveto(163.24826413,967.76903583)
\lineto(163.24826413,966.45132601)
\curveto(162.8854165,966.62320121)(162.51779456,966.75449476)(162.1453983,966.84520666)
\curveto(161.77777636,966.93591857)(161.41254158,966.98127453)(161.04969395,966.98127453)
\curveto(160.09483176,966.98127453)(159.36436219,966.65900854)(158.85828523,966.01447656)
\curveto(158.35698258,965.36994459)(158.07052393,964.39598516)(157.99890927,963.09259828)
\curveto(158.28059361,963.50796333)(158.63389262,963.825455)(159.05880629,964.04507331)
\curveto(159.48371996,964.26946592)(159.95160243,964.38166223)(160.4624537,964.38166223)
\curveto(161.53667366,964.38166223)(162.38411385,964.05462193)(163.00477427,963.40054133)
\curveto(163.630209,962.75123504)(163.94292637,961.86560037)(163.94292637,960.7436373)
\curveto(163.94292637,959.64554579)(163.61827323,958.76468542)(162.96896694,958.1010562)
\curveto(162.31966065,957.43742698)(161.45551038,957.10561237)(160.37651611,957.10561237)
\curveto(159.13996958,957.10561237)(158.19465601,957.57826916)(157.54057542,958.52358272)
\curveto(156.88649482,959.47367059)(156.55945452,960.84867214)(156.55945452,962.64858736)
\curveto(156.55945452,964.33869343)(156.96049664,965.68504911)(157.76258087,966.6876544)
\curveto(158.56466511,967.69503401)(159.64127222,968.19872381)(160.99240222,968.19872381)
\curveto(161.35524985,968.19872381)(161.72048463,968.16291648)(162.08810657,968.09130182)
\curveto(162.46050283,968.01968715)(162.84722201,967.91226516)(163.24826413,967.76903583)
\closepath
}
}
{
\newrgbcolor{curcolor}{0 0 0}
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
{
\newpath
\moveto(170.96832341,968.00536422)
\lineto(172.41493962,968.00536422)
\lineto(172.41493962,958.0580874)
\curveto(172.41493962,956.76902345)(172.16906261,955.83325851)(171.67730858,955.25079258)
\curveto(171.19032887,954.66832665)(170.40495472,954.37709368)(169.32118614,954.37709368)
\lineto(168.76975323,954.37709368)
\lineto(168.76975323,955.59454297)
\lineto(169.22092561,955.59454297)
\curveto(169.86068328,955.59454297)(170.31185566,955.77357962)(170.57444276,956.13165294)
\curveto(170.83702986,956.48972626)(170.96832341,957.13187108)(170.96832341,958.0580874)
\closepath
}
}
\end{pspicture}

View File

@ -0,0 +1,507 @@
%LaTeX with PSTricks extensions
%%Creator: Inkscape 1.0.2 (e86c870879, 2021-01-15)
%%Please note this file requires PSTricks extensions
\psset{xunit=.5pt,yunit=.5pt,runit=.5pt}
\begin{pspicture}(793.7007874,1122.51968504)
{
\newrgbcolor{curcolor}{1 0 0}
\pscustom[linewidth=3.77952756,linecolor=curcolor]
{
\newpath
\moveto(40.19461684,1021.24087837)
\lineto(129.52725508,1021.24087837)
\lineto(129.52725508,972.89477371)
\lineto(40.19461684,972.89477371)
\closepath
}
}
{
\newrgbcolor{curcolor}{0 0 1}
\pscustom[linewidth=3.77952756,linecolor=curcolor]
{
\newpath
\moveto(241.39220711,1021.24087837)
\lineto(330.72484535,1021.24087837)
\lineto(330.72484535,972.89477371)
\lineto(241.39220711,972.89477371)
\closepath
}
}
{
\newrgbcolor{curcolor}{0 0 0}
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
{
\newpath
\moveto(59.91754859,992.946404)
\lineto(62.2808325,992.946404)
\lineto(62.2808325,1001.10331422)
\lineto(59.70986606,1000.58768864)
\lineto(59.70986606,1001.90539845)
\lineto(62.26650957,1002.42102403)
\lineto(63.71312578,1002.42102403)
\lineto(63.71312578,992.946404)
\lineto(66.07640968,992.946404)
\lineto(66.07640968,991.72895471)
\lineto(59.91754859,991.72895471)
\closepath
}
}
{
\newrgbcolor{curcolor}{0 0 0}
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
{
\newpath
\moveto(72.27107821,997.65148742)
\curveto(71.62177192,997.65148742)(71.10614634,997.42948196)(70.72420147,996.98547104)
\curveto(70.3470309,996.54146013)(70.15844562,995.93273548)(70.15844562,995.15929711)
\curveto(70.15844562,994.39063305)(70.3470309,993.78190841)(70.72420147,993.33312318)
\curveto(71.10614634,992.88911227)(71.62177192,992.66710681)(72.27107821,992.66710681)
\curveto(72.92038449,992.66710681)(73.43362292,992.88911227)(73.81079348,993.33312318)
\curveto(74.19273836,993.78190841)(74.38371079,994.39063305)(74.38371079,995.15929711)
\curveto(74.38371079,995.93273548)(74.19273836,996.54146013)(73.81079348,996.98547104)
\curveto(73.43362292,997.42948196)(72.92038449,997.65148742)(72.27107821,997.65148742)
\closepath
\moveto(75.14282623,1002.18469564)
\lineto(75.14282623,1000.86698583)
\curveto(74.7799786,1001.03886102)(74.41235666,1001.17015457)(74.03996041,1001.26086648)
\curveto(73.67233846,1001.35157838)(73.30710368,1001.39693434)(72.94425605,1001.39693434)
\curveto(71.98939386,1001.39693434)(71.25892429,1001.07466835)(70.75284733,1000.43013638)
\curveto(70.25154469,999.7856044)(69.96508603,998.81164497)(69.89347137,997.50825809)
\curveto(70.17515571,997.92362314)(70.52845472,998.24111482)(70.95336839,998.46073312)
\curveto(71.37828206,998.68512573)(71.84616453,998.79732204)(72.3570158,998.79732204)
\curveto(73.43123576,998.79732204)(74.27867595,998.47028174)(74.89933637,997.81620114)
\curveto(75.5247711,997.16689486)(75.83748847,996.28126018)(75.83748847,995.15929711)
\curveto(75.83748847,994.0612056)(75.51283533,993.18034523)(74.86352904,992.51671602)
\curveto(74.21422275,991.8530868)(73.35007248,991.52127219)(72.27107821,991.52127219)
\curveto(71.03453168,991.52127219)(70.08921811,991.99392897)(69.43513752,992.93924253)
\curveto(68.78105692,993.88933041)(68.45401662,995.26433195)(68.45401662,997.06424717)
\curveto(68.45401662,998.75435324)(68.85505874,1000.10070892)(69.65714297,1001.10331422)
\curveto(70.45922721,1002.11069382)(71.53583432,1002.61438363)(72.88696432,1002.61438363)
\curveto(73.24981195,1002.61438363)(73.61504673,1002.57857629)(73.98266867,1002.50696163)
\curveto(74.35506493,1002.43534697)(74.74178411,1002.32792497)(75.14282623,1002.18469564)
\closepath
}
}
{
\newrgbcolor{curcolor}{0 0 0}
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
{
\newpath
\moveto(81.42343235,1001.468549)
\curveto(80.67863984,1001.468549)(80.11765831,1001.10092706)(79.74048775,1000.36568318)
\curveto(79.36809149,999.63521361)(79.18189337,998.53473494)(79.18189337,997.06424717)
\curveto(79.18189337,995.59853372)(79.36809149,994.49805505)(79.74048775,993.76281117)
\curveto(80.11765831,993.0323416)(80.67863984,992.66710681)(81.42343235,992.66710681)
\curveto(82.17299916,992.66710681)(82.7339807,993.0323416)(83.10637695,993.76281117)
\curveto(83.48354751,994.49805505)(83.6721328,995.59853372)(83.6721328,997.06424717)
\curveto(83.6721328,998.53473494)(83.48354751,999.63521361)(83.10637695,1000.36568318)
\curveto(82.7339807,1001.10092706)(82.17299916,1001.468549)(81.42343235,1001.468549)
\closepath
\moveto(81.42343235,1002.61438363)
\curveto(82.62178439,1002.61438363)(83.53606493,1002.13933969)(84.16627398,1001.18925181)
\curveto(84.80125733,1000.24393825)(85.11874901,998.8689367)(85.11874901,997.06424717)
\curveto(85.11874901,995.26433195)(84.80125733,993.88933041)(84.16627398,992.93924253)
\curveto(83.53606493,991.99392897)(82.62178439,991.52127219)(81.42343235,991.52127219)
\curveto(80.22508031,991.52127219)(79.30841261,991.99392897)(78.67342925,992.93924253)
\curveto(78.04322021,993.88933041)(77.72811569,995.26433195)(77.72811569,997.06424717)
\curveto(77.72811569,998.8689367)(78.04322021,1000.24393825)(78.67342925,1001.18925181)
\curveto(79.30841261,1002.13933969)(80.22508031,1002.61438363)(81.42343235,1002.61438363)
\closepath
}
}
{
\newrgbcolor{curcolor}{0 0 0}
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
{
\newpath
\moveto(90.75482405,1001.468549)
\curveto(90.01003155,1001.468549)(89.44905001,1001.10092706)(89.07187945,1000.36568318)
\curveto(88.6994832,999.63521361)(88.51328507,998.53473494)(88.51328507,997.06424717)
\curveto(88.51328507,995.59853372)(88.6994832,994.49805505)(89.07187945,993.76281117)
\curveto(89.44905001,993.0323416)(90.01003155,992.66710681)(90.75482405,992.66710681)
\curveto(91.50439087,992.66710681)(92.0653724,993.0323416)(92.43776865,993.76281117)
\curveto(92.81493922,994.49805505)(93.0035245,995.59853372)(93.0035245,997.06424717)
\curveto(93.0035245,998.53473494)(92.81493922,999.63521361)(92.43776865,1000.36568318)
\curveto(92.0653724,1001.10092706)(91.50439087,1001.468549)(90.75482405,1001.468549)
\closepath
\moveto(90.75482405,1002.61438363)
\curveto(91.95317609,1002.61438363)(92.86745664,1002.13933969)(93.49766568,1001.18925181)
\curveto(94.13264903,1000.24393825)(94.45014071,998.8689367)(94.45014071,997.06424717)
\curveto(94.45014071,995.26433195)(94.13264903,993.88933041)(93.49766568,992.93924253)
\curveto(92.86745664,991.99392897)(91.95317609,991.52127219)(90.75482405,991.52127219)
\curveto(89.55647201,991.52127219)(88.63980431,991.99392897)(88.00482096,992.93924253)
\curveto(87.37461192,993.88933041)(87.05950739,995.26433195)(87.05950739,997.06424717)
\curveto(87.05950739,998.8689367)(87.37461192,1000.24393825)(88.00482096,1001.18925181)
\curveto(88.63980431,1002.13933969)(89.55647201,1002.61438363)(90.75482405,1002.61438363)
\closepath
}
}
{
\newrgbcolor{curcolor}{0 0 0}
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
{
\newpath
\moveto(101.52566802,1002.42102403)
\lineto(102.97228423,1002.42102403)
\lineto(102.97228423,997.90213874)
\lineto(107.77046671,1002.42102403)
\lineto(109.63244797,1002.42102403)
\lineto(104.32580138,997.43664343)
\lineto(110.01200569,991.72895471)
\lineto(108.10705563,991.72895471)
\lineto(102.97228423,996.87804905)
\lineto(102.97228423,991.72895471)
\lineto(101.52566802,991.72895471)
\closepath
}
}
{
\newrgbcolor{curcolor}{0 0 0}
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
{
\newpath
\moveto(269.95238825,1001.16060576)
\lineto(266.30004039,995.45291705)
\lineto(269.95238825,995.45291705)
\closepath
\moveto(269.57283053,1002.42102384)
\lineto(271.39184299,1002.42102384)
\lineto(271.39184299,995.45291705)
\lineto(272.91723533,995.45291705)
\lineto(272.91723533,994.24979069)
\lineto(271.39184299,994.24979069)
\lineto(271.39184299,991.72895452)
\lineto(269.95238825,991.72895452)
\lineto(269.95238825,994.24979069)
\lineto(265.1255599,994.24979069)
\lineto(265.1255599,995.64627664)
\closepath
}
}
{
\newrgbcolor{curcolor}{0 0 0}
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
{
\newpath
\moveto(278.40291868,1001.46854881)
\curveto(277.65812618,1001.46854881)(277.09714464,1001.10092687)(276.71997408,1000.36568299)
\curveto(276.34757783,999.63521342)(276.1613797,998.53473475)(276.1613797,997.06424698)
\curveto(276.1613797,995.59853353)(276.34757783,994.49805486)(276.71997408,993.76281098)
\curveto(277.09714464,993.03234141)(277.65812618,992.66710662)(278.40291868,992.66710662)
\curveto(279.1524855,992.66710662)(279.71346703,993.03234141)(280.08586328,993.76281098)
\curveto(280.46303385,994.49805486)(280.65161913,995.59853353)(280.65161913,997.06424698)
\curveto(280.65161913,998.53473475)(280.46303385,999.63521342)(280.08586328,1000.36568299)
\curveto(279.71346703,1001.10092687)(279.1524855,1001.46854881)(278.40291868,1001.46854881)
\closepath
\moveto(278.40291868,1002.61438344)
\curveto(279.60127072,1002.61438344)(280.51555127,1002.1393395)(281.14576031,1001.18925162)
\curveto(281.78074366,1000.24393806)(282.09823534,998.86893651)(282.09823534,997.06424698)
\curveto(282.09823534,995.26433176)(281.78074366,993.88933022)(281.14576031,992.93924234)
\curveto(280.51555127,991.99392878)(279.60127072,991.521272)(278.40291868,991.521272)
\curveto(277.20456664,991.521272)(276.28789894,991.99392878)(275.65291559,992.93924234)
\curveto(275.02270655,993.88933022)(274.70760202,995.26433176)(274.70760202,997.06424698)
\curveto(274.70760202,998.86893651)(275.02270655,1000.24393806)(275.65291559,1001.18925162)
\curveto(276.28789894,1002.1393395)(277.20456664,1002.61438344)(278.40291868,1002.61438344)
\closepath
}
}
{
\newrgbcolor{curcolor}{0 0 0}
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
{
\newpath
\moveto(287.73430948,1001.46854881)
\curveto(286.98951698,1001.46854881)(286.42853544,1001.10092687)(286.05136488,1000.36568299)
\curveto(285.67896863,999.63521342)(285.4927705,998.53473475)(285.4927705,997.06424698)
\curveto(285.4927705,995.59853353)(285.67896863,994.49805486)(286.05136488,993.76281098)
\curveto(286.42853544,993.03234141)(286.98951698,992.66710662)(287.73430948,992.66710662)
\curveto(288.4838763,992.66710662)(289.04485783,993.03234141)(289.41725408,993.76281098)
\curveto(289.79442465,994.49805486)(289.98300993,995.59853353)(289.98300993,997.06424698)
\curveto(289.98300993,998.53473475)(289.79442465,999.63521342)(289.41725408,1000.36568299)
\curveto(289.04485783,1001.10092687)(288.4838763,1001.46854881)(287.73430948,1001.46854881)
\closepath
\moveto(287.73430948,1002.61438344)
\curveto(288.93266153,1002.61438344)(289.84694207,1002.1393395)(290.47715111,1001.18925162)
\curveto(291.11213446,1000.24393806)(291.42962614,998.86893651)(291.42962614,997.06424698)
\curveto(291.42962614,995.26433176)(291.11213446,993.88933022)(290.47715111,992.93924234)
\curveto(289.84694207,991.99392878)(288.93266153,991.521272)(287.73430948,991.521272)
\curveto(286.53595744,991.521272)(285.61928974,991.99392878)(284.98430639,992.93924234)
\curveto(284.35409735,993.88933022)(284.03899283,995.26433176)(284.03899283,997.06424698)
\curveto(284.03899283,998.86893651)(284.35409735,1000.24393806)(284.98430639,1001.18925162)
\curveto(285.61928974,1002.1393395)(286.53595744,1002.61438344)(287.73430948,1002.61438344)
\closepath
}
}
{
\newrgbcolor{curcolor}{0 0 0}
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
{
\newpath
\moveto(298.50515525,1002.42102384)
\lineto(299.95177146,1002.42102384)
\lineto(299.95177146,997.90213855)
\lineto(304.74995394,1002.42102384)
\lineto(306.6119352,1002.42102384)
\lineto(301.30528861,997.43664324)
\lineto(306.99149292,991.72895452)
\lineto(305.08654286,991.72895452)
\lineto(299.95177146,996.87804886)
\lineto(299.95177146,991.72895452)
\lineto(298.50515525,991.72895452)
\closepath
}
}
{
\newrgbcolor{curcolor}{0 0 0}
\pscustom[linewidth=3.77952756,linecolor=curcolor]
{
\newpath
\moveto(214.8876076,997.06782784)
\curveto(214.8876076,1008.97026906)(207.71770254,1019.7008024)(196.72147785,1024.25541166)
\curveto(185.72527558,1028.81001162)(173.0684439,1026.29166336)(164.65218326,1017.87540271)
\curveto(146.11463014,999.3378496)(159.2405209,967.63997836)(185.45975813,967.63997836)
\curveto(197.36219935,967.63997836)(208.09273268,974.80988343)(212.64734194,985.80610812)
\curveto(217.20194191,996.80231039)(214.68359365,1009.45914206)(206.267333,1017.87540271)
\curveto(197.85107235,1026.29166336)(185.19424067,1028.81001162)(174.19803841,1024.25541166)
\curveto(163.20181371,1019.7008024)(156.03190865,1008.97026906)(156.03190865,997.06782784)
\curveto(156.03190865,970.84859062)(187.72977988,957.72269985)(206.267333,976.26025297)
\curveto(214.68359365,984.67651362)(217.20194191,997.33334529)(212.64734194,1008.32954756)
\curveto(208.09273268,1019.32577226)(197.36219935,1026.49567732)(185.45975813,1026.49567732)
\curveto(159.2405209,1026.49567732)(146.11463014,994.79780609)(164.65218326,976.26025297)
\curveto(183.18973637,957.72269985)(214.8876076,970.84859062)(214.8876076,997.06782784)
\closepath
}
}
{
\newrgbcolor{curcolor}{0 0 0}
\pscustom[linewidth=0.99999871,linecolor=curcolor]
{
\newpath
\moveto(129.83037732,997.06782614)
\lineto(155.71440756,997.06782614)
}
}
{
\newrgbcolor{curcolor}{0 0 0}
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
{
\newpath
\moveto(145.71442047,997.06782614)
\lineto(141.71442564,993.06783131)
\lineto(155.71440756,997.06782614)
\lineto(141.71442564,1001.06782098)
\closepath
}
}
{
\newrgbcolor{curcolor}{0 0 0}
\pscustom[linewidth=1.06666532,linecolor=curcolor]
{
\newpath
\moveto(145.71442047,997.06782614)
\lineto(141.71442564,993.06783131)
\lineto(155.71440756,997.06782614)
\lineto(141.71442564,1001.06782098)
\closepath
}
}
{
\newrgbcolor{curcolor}{0 0 0}
\pscustom[linewidth=1.00157475,linecolor=curcolor]
{
\newpath
\moveto(215.39527181,997.06782614)
\lineto(241.27930205,997.06782614)
}
}
{
\newrgbcolor{curcolor}{0 0 0}
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
{
\newpath
\moveto(231.26355456,997.06782614)
\lineto(227.25725556,993.06152715)
\lineto(241.27930205,997.06782614)
\lineto(227.25725556,1001.07412514)
\closepath
}
}
{
\newrgbcolor{curcolor}{0 0 0}
\pscustom[linewidth=1.06834643,linecolor=curcolor]
{
\newpath
\moveto(231.26355456,997.06782614)
\lineto(227.25725556,993.06152715)
\lineto(241.27930205,997.06782614)
\lineto(227.25725556,1001.07412514)
\closepath
}
}
{
\newrgbcolor{curcolor}{0 0 0}
\pscustom[linewidth=0.99999871,linecolor=curcolor]
{
\newpath
\moveto(203.14213417,1019.82024945)
\lineto(220.77983622,1038.76475717)
}
}
{
\newrgbcolor{curcolor}{0 0 0}
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
{
\newpath
\moveto(213.96571932,1031.4457714)
\lineto(214.16766687,1025.79253034)
\lineto(220.77983622,1038.76475717)
\lineto(208.31247826,1031.24382386)
\closepath
}
}
{
\newrgbcolor{curcolor}{0 0 0}
\pscustom[linewidth=1.06666532,linecolor=curcolor]
{
\newpath
\moveto(213.96571932,1031.4457714)
\lineto(214.16766687,1025.79253034)
\lineto(220.77983622,1038.76475717)
\lineto(208.31247826,1031.24382386)
\closepath
}
}
{
\newrgbcolor{curcolor}{0 0 0}
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
{
\newpath
\moveto(121.77093724,964.6846666)
\curveto(120.72058883,964.6846666)(119.88508442,964.29317311)(119.264424,963.51018611)
\curveto(118.64853789,962.72719912)(118.34059483,961.66014063)(118.34059483,960.30901064)
\curveto(118.34059483,958.96265496)(118.64853789,957.89798362)(119.264424,957.11499663)
\curveto(119.88508442,956.33200964)(120.72058883,955.94051614)(121.77093724,955.94051614)
\curveto(122.82128564,955.94051614)(123.65201574,956.33200964)(124.26312754,957.11499663)
\curveto(124.87901365,957.89798362)(125.1869567,958.96265496)(125.1869567,960.30901064)
\curveto(125.1869567,961.66014063)(124.87901365,962.72719912)(124.26312754,963.51018611)
\curveto(123.65201574,964.29317311)(122.82128564,964.6846666)(121.77093724,964.6846666)
\closepath
\moveto(123.79763222,955.16707777)
\lineto(125.70258228,953.08309105)
\lineto(123.95518448,953.08309105)
\lineto(122.37250041,954.79468152)
\curveto(122.21494815,954.7851329)(122.09320322,954.77797143)(122.00726563,954.77319712)
\curveto(121.92610234,954.76842281)(121.84732621,954.76603565)(121.77093724,954.76603565)
\curveto(120.26702929,954.76603565)(119.06390294,955.2673383)(118.16155817,956.26994359)
\curveto(117.26398772,957.2773232)(116.81520249,958.62367888)(116.81520249,960.30901064)
\curveto(116.81520249,961.99911671)(117.26398772,963.34547239)(118.16155817,964.34807768)
\curveto(119.06390294,965.35545729)(120.26702929,965.85914709)(121.77093724,965.85914709)
\curveto(123.27007087,965.85914709)(124.46842291,965.35545729)(125.36599336,964.34807768)
\curveto(126.26356382,963.34547239)(126.71234904,961.99911671)(126.71234904,960.30901064)
\curveto(126.71234904,959.0676898)(126.46169772,958.00540562)(125.96039507,957.12215809)
\curveto(125.46386674,956.23891057)(124.74294579,955.58721713)(123.79763222,955.16707777)
\closepath
}
}
{
\newrgbcolor{curcolor}{0 0 0}
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
{
\newpath
\moveto(129.35492979,956.19116746)
\lineto(131.7182137,956.19116746)
\lineto(131.7182137,964.34807768)
\lineto(129.14724726,963.8324521)
\lineto(129.14724726,965.15016192)
\lineto(131.70389077,965.6657875)
\lineto(133.15050698,965.6657875)
\lineto(133.15050698,956.19116746)
\lineto(135.51379089,956.19116746)
\lineto(135.51379089,954.97371818)
\lineto(129.35492979,954.97371818)
\closepath
}
}
{
\newrgbcolor{curcolor}{0 0 0}
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
{
\newpath
\moveto(209.26109472,964.6846666)
\curveto(208.21074631,964.6846666)(207.3752419,964.29317311)(206.75458148,963.51018611)
\curveto(206.13869537,962.72719912)(205.83075231,961.66014063)(205.83075231,960.30901064)
\curveto(205.83075231,958.96265496)(206.13869537,957.89798362)(206.75458148,957.11499663)
\curveto(207.3752419,956.33200964)(208.21074631,955.94051614)(209.26109472,955.94051614)
\curveto(210.31144312,955.94051614)(211.14217322,956.33200964)(211.75328502,957.11499663)
\curveto(212.36917113,957.89798362)(212.67711418,958.96265496)(212.67711418,960.30901064)
\curveto(212.67711418,961.66014063)(212.36917113,962.72719912)(211.75328502,963.51018611)
\curveto(211.14217322,964.29317311)(210.31144312,964.6846666)(209.26109472,964.6846666)
\closepath
\moveto(211.2877897,955.16707777)
\lineto(213.19273976,953.08309105)
\lineto(211.44534196,953.08309105)
\lineto(209.86265789,954.79468152)
\curveto(209.70510563,954.7851329)(209.5833607,954.77797143)(209.49742311,954.77319712)
\curveto(209.41625982,954.76842281)(209.33748369,954.76603565)(209.26109472,954.76603565)
\curveto(207.75718677,954.76603565)(206.55406042,955.2673383)(205.65171565,956.26994359)
\curveto(204.7541452,957.2773232)(204.30535997,958.62367888)(204.30535997,960.30901064)
\curveto(204.30535997,961.99911671)(204.7541452,963.34547239)(205.65171565,964.34807768)
\curveto(206.55406042,965.35545729)(207.75718677,965.85914709)(209.26109472,965.85914709)
\curveto(210.76022835,965.85914709)(211.95858039,965.35545729)(212.85615084,964.34807768)
\curveto(213.7537213,963.34547239)(214.20250652,961.99911671)(214.20250652,960.30901064)
\curveto(214.20250652,959.0676898)(213.9518552,958.00540562)(213.45055255,957.12215809)
\curveto(212.95402422,956.23891057)(212.23310327,955.58721713)(211.2877897,955.16707777)
\closepath
}
}
{
\newrgbcolor{curcolor}{0 0 0}
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
{
\newpath
\moveto(217.8405311,956.19116746)
\lineto(222.8893649,956.19116746)
\lineto(222.8893649,954.97371818)
\lineto(216.10029477,954.97371818)
\lineto(216.10029477,956.19116746)
\curveto(216.64934052,956.75931046)(217.39652018,957.52081306)(218.34183375,958.47567524)
\curveto(219.29192162,959.43531174)(219.88871049,960.053585)(220.13220034,960.33049504)
\curveto(220.5953085,960.85089493)(220.91757449,961.29013153)(221.09899831,961.64820485)
\curveto(221.28519643,962.01105248)(221.3782955,962.36673865)(221.3782955,962.71526334)
\curveto(221.3782955,963.28340634)(221.17777444,963.7465145)(220.77673232,964.10458782)
\curveto(220.38046451,964.46266114)(219.86245178,964.6416978)(219.22269411,964.6416978)
\curveto(218.76913457,964.6416978)(218.28931633,964.56292167)(217.78323937,964.40536941)
\curveto(217.28193672,964.24781715)(216.74482674,964.00910161)(216.17190943,963.68922277)
\lineto(216.17190943,965.15016192)
\curveto(216.75437536,965.38410315)(217.29864681,965.56075266)(217.80472377,965.68011043)
\curveto(218.31080073,965.7994682)(218.77390888,965.85914709)(219.19404825,965.85914709)
\curveto(220.30168838,965.85914709)(221.1849359,965.58223706)(221.84379081,965.02841699)
\curveto(222.50264572,964.47459692)(222.83207317,963.73457873)(222.83207317,962.80836241)
\curveto(222.83207317,962.3691258)(222.74852273,961.9513736)(222.58142185,961.55510579)
\curveto(222.41909528,961.16361229)(222.12070084,960.70050413)(221.68623855,960.16578131)
\curveto(221.56688078,960.02732629)(221.18732306,959.62628417)(220.54756539,958.96265496)
\curveto(219.90780773,958.30380005)(219.00546296,957.37997088)(217.8405311,956.19116746)
\closepath
}
}
{
\newrgbcolor{curcolor}{0 0 0}
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
{
\newpath
\moveto(231.54845954,1040.42175805)
\lineto(229.58621775,1035.10078852)
\lineto(233.5178628,1035.10078852)
\closepath
\moveto(230.73205238,1041.84688986)
\lineto(232.37202818,1041.84688986)
\lineto(236.44690255,1031.15482054)
\lineto(234.94299461,1031.15482054)
\lineto(233.96903518,1033.89766217)
\lineto(229.1493683,1033.89766217)
\lineto(228.17540887,1031.15482054)
\lineto(226.65001653,1031.15482054)
\closepath
}
}
\end{pspicture}

View File

@ -0,0 +1,321 @@
%!PS-Adobe-3.0 EPSF-3.0
%%Creator: cairo 1.16.0 (https://cairographics.org)
%%CreationDate: Sun Nov 27 20:53:10 2022
%%Pages: 1
%%DocumentData: Clean7Bit
%%LanguageLevel: 2
%%BoundingBox: 0 0 221 72
%%EndComments
%%BeginProlog
50 dict begin
/q { gsave } bind def
/Q { grestore } bind def
/cm { 6 array astore concat } bind def
/w { setlinewidth } bind def
/J { setlinecap } bind def
/j { setlinejoin } bind def
/M { setmiterlimit } bind def
/d { setdash } bind def
/m { moveto } bind def
/l { lineto } bind def
/c { curveto } bind def
/h { closepath } bind def
/re { exch dup neg 3 1 roll 5 3 roll moveto 0 rlineto
0 exch rlineto 0 rlineto closepath } bind def
/S { stroke } bind def
/f { fill } bind def
/f* { eofill } bind def
/n { newpath } bind def
/W { clip } bind def
/W* { eoclip } bind def
/BT { } bind def
/ET { } bind def
/BDC { mark 3 1 roll /BDC pdfmark } bind def
/EMC { mark /EMC pdfmark } bind def
/cairo_store_point { /cairo_point_y exch def /cairo_point_x exch def } def
/Tj { show currentpoint cairo_store_point } bind def
/TJ {
{
dup
type /stringtype eq
{ show } { -0.001 mul 0 cairo_font_matrix dtransform rmoveto } ifelse
} forall
currentpoint cairo_store_point
} bind def
/cairo_selectfont { cairo_font_matrix aload pop pop pop 0 0 6 array astore
cairo_font exch selectfont cairo_point_x cairo_point_y moveto } bind def
/Tf { pop /cairo_font exch def /cairo_font_matrix where
{ pop cairo_selectfont } if } bind def
/Td { matrix translate cairo_font_matrix matrix concatmatrix dup
/cairo_font_matrix exch def dup 4 get exch 5 get cairo_store_point
/cairo_font where { pop cairo_selectfont } if } bind def
/Tm { 2 copy 8 2 roll 6 array astore /cairo_font_matrix exch def
cairo_store_point /cairo_font where { pop cairo_selectfont } if } bind def
/g { setgray } bind def
/rg { setrgbcolor } bind def
/d1 { setcachedevice } bind def
/cairo_data_source {
CairoDataIndex CairoData length lt
{ CairoData CairoDataIndex get /CairoDataIndex CairoDataIndex 1 add def }
{ () } ifelse
} def
/cairo_flush_ascii85_file { cairo_ascii85_file status { cairo_ascii85_file flushfile } if } def
/cairo_image { image cairo_flush_ascii85_file } def
/cairo_imagemask { imagemask cairo_flush_ascii85_file } def
%%EndProlog
%%BeginSetup
%%BeginResource: font BitstreamVeraSans-Roman
11 dict begin
/FontType 42 def
/FontName /BitstreamVeraSans-Roman def
/PaintType 0 def
/FontMatrix [ 1 0 0 1 0 0 ] def
/FontBBox [ 0 0 0 0 ] def
/Encoding 256 array def
0 1 255 { Encoding exch /.notdef put } for
Encoding 32 /space put
Encoding 43 /plus put
Encoding 45 /hyphen put
Encoding 48 /zero put
Encoding 49 /one put
Encoding 50 /two put
Encoding 51 /three put
Encoding 52 /four put
Encoding 54 /six put
Encoding 55 /seven put
Encoding 57 /nine put
Encoding 61 /equal put
Encoding 65 /A put
Encoding 74 /J put
Encoding 75 /K put
Encoding 81 /Q put
/CharStrings 17 dict dup begin
/.notdef 0 def
/one 1 def
/six 2 def
/zero 3 def
/space 4 def
/K 5 def
/four 6 def
/Q 7 def
/hyphen 8 def
/equal 9 def
/nine 10 def
/J 11 def
/A 12 def
/three 13 def
/two 14 def
/seven 15 def
/plus 16 def
end readonly def
/sfnts [
<00010000000900800003001063767420ffd31d3900000b04000001fc6670676de7b4f1c40000
0d000000008b676c7966eeb0ff5e0000009c00000a6868656164dd84a2d000000d8c00000036
686865611045077400000dc400000024686d747853bc081400000de8000000446c6f636114b6
175000000e2c000000246d617870044c063a00000e5000000020707265703b07f10000000e70
0000056800020066fe96046605a400030007001a400c04fb0006fb0108057f0204002fc4d4ec
310010d4ecd4ec301311211125211121660400fc73031bfce5fe96070ef8f2720629000100e1
0000045a05d5000a004b40154203a00402a005810700a009081f061c03001f010b10d4ecc4fc
ec31002fec32f4ecd4ec304b53585922014bb00f5458bd000bffc00001000b000b0040381137
3859b40f030f04025d3721110535253311211521fe014afe990165ca014afca4aa047348b848
fad5aa0000000002008fffe3049605f0000b0024005840241306000d860c00a01606a01c16a5
10a00c8922911c8c250c22091c191e131c03211f1b2510fcececf4ece4310010e4f4e4fce410
ee10ee10ee111239304014cb00cb01cd02cd03cd04cb05cb0607a41eb21e025d015d01220615
141633323635342601152e01232202033e0133320015140023200011100021321602a4889f9f
88889f9f01094c9b4cc8d30f3bb26be10105fef0e2fefdfeee0150011b4c9b033bbaa2a1bbbb
a1a2ba0279b82426fef2feef575dfeefebe6feea018d0179016201a51e00000000020087ffe3
048f05f0000b00170023401306a01200a00c91128c18091c0f1e031c151b1810fcecf4ec3100
10e4f4ec10ee30012202111012333212111002273200111000232200111000028b9c9d9d9c9d
9d9d9dfb0109fef7fbfbfef701090550fecdfeccfecdfecd0133013301340133a0fe73fe86fe
87fe73018d0179017a018d00000100c90000056a05d5000a00ef402808110506050711060605
0311040504021105050442080502030300af09060501040608011c00040b10fcec32d4c41139
31002f3cec321739304b5358071004ed071005ed071005ed071004ed5922b2080301015d4092
140201040209081602280528083702360534084702460543085502670276027705830288058f
0894029b08e702150603090509061b031907050a030a07180328052b062a0736043605360635
07300c41034004450540064007400c62036004680567077705700c8b038b058e068f078f0c9a
039d069d07b603b507c503c507d703d607e803e904e805ea06f703f805f9062c5d71005d7113
33110121090121011123c9ca029e0104fd1b031afef6fd33ca05d5fd890277fd48fce302cffd
3100000000020064000004a405d50002000d008c401d010d030d0003030d4200030b07a00501
038109010c0a001c0608040c0e10dcd43cc4ec32113931002fe4d43cec321239304b53580710
04c9071005c95922014bb00b544bb00d545b58bd000e00400001000e000effc0381137385940
2a0b002a0048005900690077008a000716012b0026012b0336014e014f0c4f0d560166017501
7a0385010d5d005d09012103331133152311231121350306fe0201fe35fed5d5c9fd5e0525fc
e303cdfc33a8fea00160c300000000020073fef805d905f0000b001d0052402a1110020f010c
0d0c0e010d0d0c420f1e0c06951200951891128c0d1e0d1b0f0c0309191b33031915101e10fc
ecfcec1139391139310010c4e4f4ec10ee391239304b5358071005ed071005ed173959220122
001110003332001110001301232706062320001110002120001110020327dcfefd0103dcdc01
01feff3f010af4dd212310fec5fe870179013b013a0178d1054cfeb8fee5fee6feb80148011a
011b0148facffeddef020201a50161016201a5fe5bfe9efefcfe8e000001006401df027f0283
00030011b6009c020401000410dccc310010d4ec301321152164021bfde50283a400000200d9
016005db03a200030007001c400d009c02069c040805010400230810fc3cc432310010d4ecd4
ec301321152115211521d90502fafe0502fafe03a2a8f0aa000000020081ffe3048705f00018
002400584023071f1901860019a00aa504a00089161fa01091168c25071c1c21131e0022221c
0d1b2510fcece4f4ecec310010e4f4ec10e6fef5ee10ee111239304016c419c21ac01bc01cc0
1dc21ec41f07aa12bc12e912035d015d37351e01333212130e01232200353400332000111000
212226013236353426232206151416e14c9c4bc8d30f3ab26ce0fefb0110e201030111feb1fe
e54c9c013e889f9f88889f9f1fb82426010d0112565c010febe60116fe73fe86fe9ffe5b1e02
97baa2a1bbbba1a2ba000001ff96fe66019305d5000b004d40130b0200079505b000810c0508
0639011c00040c10fcece43939310010e4fcec11393930014bb0105458bd000cffc00001000c
000c00403811373859400d300d400d500d600d8f0d9f0d065d13331110062b013533323635c9
cacde34d3f866e05d5fa93fef2f4aa96c2000000000200100000056805d50002000a00ba4041
00110100040504021105050401110a030a0011020003030a0711050406110505040911030a08
110a030a4200030795010381090509080706040302010009050a0b10d4c4173931002f3ce4d4
ec1239304b5358071005ed0705ed071005ed0705ed071008ed071005ed071005ed071008ed59
22b2200c01015d403a0f005800760070008c000507010802060309041601190256015802500c
67016802780176027c0372047707780887018802800c980299039604175d005d090121013301
230321032302bcfeee0225fe7be50239d288fd5f88d5050efd1903aefa2b017ffe8100000001
009cffe3047305f00028007b402e0015130a86091f862013a0150da00993061ca02093239106
8c15a329161c13000314191c2620101c03141f09062910fcc4c4d4ecf4ec11173939310010ec
e4f4e4ec10e6ee10ee10ee10ee11123930014bb016544bb014545b58bd002900400001002900
29ffc038113738594009641e611f6120642104005d011e0115140421222627351e0133323635
34262b013533323635342623220607353e01333204151406033f91a3fed0fee85ec76a54c86d
bec7b9a5aeb6959ea39853be7273c959e6010c8e03251fc490ddf22525c33132968f8495a677
70737b2426b42020d1b27cab0000000100960000044a05f0001c00a54027191a1b03181c1105
0400110505044210a111940da014910400a00200100a02010a1c171003061d10fcc4d4ecc0c0
11123931002fec32f4ecf4ec304b5358071005ed0705ed1117395922014bb015544bb016545b
4bb014545b58bd001d00400001001d001dffc0381137385940325504560556077a047a05761b
87190704000419041a041b051c74007606751a731b741c82008619821a821b821ca800a81b11
5d005d25211521353600373e0135342623220607353e01333204151406070600018902c1fc4c
73018d33614da7865fd3787ad458e80114455b19fef4aaaaaa7701913a6d974977964243cc31
32e8c25ca5701dfeeb000000000100a80000046805d500060063401805110203020311040504
4205a0008103050301040100060710fcccc411393931002ff4ec304b5358071005ed071005ed
5922014bb0165458bd00070040000100070007ffc03811373859401258020106031a05390548
056703b000b006075d005d13211501230121a803c0fde2d301fefd3305d556fa81052b000000
000100d9000005db0504000b002340110009019c07030502150400170a0615080c10dcfc3cfc
3cec31002fd43cfc3cc43001112115211123112135211103ae022dfdd3a8fdd3022d0504fdd3
aafdd3022daa022d013500b800cb00cb00c100aa009c01a600b800660000007100cb00a002b2
0085007500b800c301cb0189022d00cb00a600f000d300aa008700cb03aa0400014a003300cb
000000d9050200f4015400b4009c01390114013907060400044e04b4045204b804e704cd0037
047304cd04600473013303a2055605a60556053903c5021200c9001f00b801df007300ba03e9
033303bc0444040e00df03cd03aa00e503aa0404000000cb008f00a4007b00b80014016f007f
027b0252008f00c705cd009a009a006f00cb00cd019e01d300f000ba018300d5009803040248
009e01d500c100cb00f600830354027f00000333026600d300c700a400cd008f009a00730400
05d5010a00fe022b00a400b4009c00000062009c0000001d032d05d505d505d505f0007f007b
005400a406b80614072301d300b800cb00a601c301ec069300a000d3035c037103db01850423
04a80448008f0139011401390360008f05d5019a0614072306660179046004600460047b009c
00000277046001aa00e904600762007b00c5007f027b000000b4025205cd006600bc00660077
061000cd013b01850389008f007b0000001d00cd074a042f009c009c0000077d006f0000006f
0335006a006f007b00ae00b2002d0396008f027b00f600830354063705f6008f009c04e10266
008f018d02f600cd03440029006604ee007300001400b6060504030201002c2010b002254964
b040515820c859212d2cb002254964b040515820c859212d2c20100720b00050b00d7920b8ff
ff5058041b0559b0051cb0032508b0042523e120b00050b00d7920b8ffff5058041b0559b005
1cb0032508e12d2c4b505820b0fd454459212d2cb002254560442d2c4b5358b00225b0022545
445921212d2c45442d000001000000020000253fbf425f0f3cf5001f080000000000bab9f0b8
00000000bac26791fe89fe1d0a4c076d00000008000100000000000000010000076dfe1d0000
0abcfe89fe890a4c00010000000000000000000000000000001104cd0066051700e10517008f
05170087028b0000053f00c905170064064c007302e3006406b400d905170081025cff960579
00100517009c05170096051700a806b400d900000022006000cc010e010e01a20206026c0282
02a4030e034c03c6044004c4050a0534000100000011004d0007004200040002001000400007
00000415056800030001b8028040fffbfe03fa1403f92503f83203f79603f60e03f5fe03f4fe
03f32503f20e03f19603f02503ef8a4105effe03ee9603ed9603ecfa03ebfa03eafe03e93a03
e84203e7fe03e63203e5e45305e59603e48a4105e45303e3e22f05e3fa03e22f03e1fe03e0fe
03df3203de1403dd9603dcfe03db1203da7d03d9bb03d8fe03d68a4105d67d03d5d44705d57d
03d44703d3d21b05d3fe03d21b03d1fe03d0fe03cffe03cefe03cd9603cccb1e05ccfe03cb1e
03ca3203c9fe03c6851105c61c03c51603c4fe03c3fe03c2fe03c1fe03c0fe03bffe03befe03
bdfe03bcfe03bbfe03ba1103b9862505b9fe03b8b7bb05b8fe03b7b65d05b7bb03b78004b6b5
2505b65d40ff03b64004b52503b4fe03b39603b2fe03b1fe03b0fe03affe03ae6403ad0e03ac
ab2505ac6403abaa1205ab2503aa1203a98a4105a9fa03a8fe03a7fe03a6fe03a51203a4fe03
a3a20e05a33203a20e03a16403a08a4105a096039ffe039e9d0c059efe039d0c039c9b19059c
64039b9a10059b19039a1003990a0398fe0397960d0597fe03960d03958a410595960394930e
05942803930e0392fa039190bb0591fe03908f5d0590bb039080048f8e25058f5d038f40048e
25038dfe038c8b2e058cfe038b2e038a8625058a410389880b05891403880b03878625058764
038685110586250385110384fe038382110583fe0382110381fe0380fe037ffe0340ff7e7d7d
057efe037d7d037c64037b5415057b25037afe0379fe03780e03770c03760a0375fe0374fa03
73fa0372fa0371fa0370fe036ffe036efe036c21036bfe036a1142056a530369fe03687d0367
11420566fe0365fe0364fe0363fe0362fe03613a0360fa035e0c035dfe035bfe035afe035958
0a0559fa03580a035716190557320356fe035554150555420354150353011005531803521403
514a130551fe03500b034ffe034e4d10054efe034d10034cfe034b4a13054bfe034a4910054a
1303491d0d05491003480d0347fe0346960345960344fe0343022d0543fa0342bb03414b0340
fe033ffe033e3d12053e14033d3c0f053d12033c3b0d053c40ff0f033b0d033afe0339fe0338
37140538fa033736100537140336350b05361003350b03341e03330d0332310b0532fe03310b
03302f0b05300d032f0b032e2d09052e10032d09032c32032b2a25052b64032a2912052a2503
2912032827250528410327250326250b05260f03250b0324fe0323fe03220f03210110052112
032064031ffa031e1d0d051e64031d0d031c1142051cfe031bfa031a42031911420519fe0318
64031716190517fe031601100516190315fe0314fe0313fe031211420512fe0311022d051142
03107d030f64030efe030d0c16050dfe030c0110050c16030bfe030a100309fe0308022d0508
fe030714030664030401100504fe03401503022d0503fe0302011005022d0301100300fe0301
b80164858d012b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b
2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b
2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b
2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b
2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b002b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b
2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b
2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b
2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b
2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b1d00>
] def
/f-0-0 currentdict end definefont pop
%%EndResource
%%EndSetup
%%Page: 1 1
%%BeginPageSetup
%%PageBoundingBox: 0 0 221 72
%%EndPageSetup
q 0 0 221 72 rectclip
1 0 0 -1 0 72 cm q
1 0 0 rg
2.834646 w
0 J
0 j
[] 0.0 d
4 M q 1 0 0 1 0 0 cm
1.418 15.598 67 36.262 re S Q
0 0 1 rg
q 1 0 0 1 0 0 cm
152.316 15.598 67 36.262 re S Q
0 g
BT
11.000012 0 0 -11.000012 14.845262 37.733471 Tm
/f-0-0 1 Tf
(1600 K)Tj
14.066635 0 Td
(400 K)Tj
ET
q 1 0 0 1 0 0 cm
132.438 33.73 m 132.438 45.918 122.555 55.801 110.367 55.801 c 98.176 55.801
88.297 45.918 88.297 33.73 c 88.297 21.539 98.176 11.66 110.367 11.66 c
122.555 11.66 132.438 21.539 132.438 33.73 c h
132.438 33.73 m S Q
0.749999 w
q 1 0 0 1 0 0 cm
68.645 33.73 m 88.059 33.73 l S Q
80.559 33.73 m 77.559 36.73 l 88.059 33.73 l 77.559 30.73 l h
80.559 33.73 m f*
0.799999 w
q -1 0 0 -1 0 0 cm
-80.559 -33.73 m -77.559 -36.73 l -88.059 -33.73 l -77.559 -30.73 l h
-80.559 -33.73 m S Q
0.751181 w
q 1 0 0 1 0 0 cm
132.816 33.73 m 152.23 33.73 l S Q
144.719 33.73 m 141.715 36.734 l 152.23 33.73 l 141.715 30.723 l h
144.719 33.73 m f*
0.80126 w
q -1 0 0 -1 0 0 cm
-144.719 -33.73 m -141.715 -36.734 l -152.23 -33.73 l -141.715 -30.723
l h
-144.719 -33.73 m S Q
0.749999 w
q 1 0 0 1 0 0 cm
123.629 16.664 m 136.855 2.457 l S Q
131.746 7.945 m 131.898 12.188 l 136.855 2.457 l 127.504 8.098 l h
131.746 7.945 m f*
0.585519 w
q -0.931019 1 -1 -0.931019 0 0 cm
-61.449 -74.536 m -59.253 -76.733 l -66.937 -74.536 l -59.252 -72.339 l
h
-61.449 -74.536 m S Q
BT
11.000012 0 0 -11.000012 124.448734 69.022348 Tm
/f-0-0 1 Tf
[(Q)-28(-=-1109 J)]TJ
1.52038 5.532564 Td
(A=3327 J)Tj
-9.162768 -5.576694 Td
(Q+=4436 J)Tj
ET
Q Q
showpage
%%Trailer
end
%%EOF

View File

@ -0,0 +1,63 @@
%% Creator: Inkscape 1.0.2 (e86c870879, 2021-01-15), www.inkscape.org
%% PDF/EPS/PS + LaTeX output extension by Johan Engelen, 2010
%% Accompanies image file 'cycle2.eps' (pdf, eps, ps)
%%
%% To include the image in your LaTeX document, write
%% \input{<filename>.pdf_tex}
%% instead of
%% \includegraphics{<filename>.pdf}
%% To scale the image, write
%% \def\svgwidth{<desired width>}
%% \input{<filename>.pdf_tex}
%% instead of
%% \includegraphics[width=<desired width>]{<filename>.pdf}
%%
%% Images with a different path to the parent latex file can
%% be accessed with the `import' package (which may need to be
%% installed) using
%% \usepackage{import}
%% in the preamble, and then including the image with
%% \import{<path to file>}{<filename>.pdf_tex}
%% Alternatively, one can specify
%% \graphicspath{{<path to file>/}}
%%
%% For more information, please see info/svg-inkscape on CTAN:
%% http://tug.ctan.org/tex-archive/info/svg-inkscape
%%
\begingroup%
\makeatletter%
\providecommand\color[2][]{%
\errmessage{(Inkscape) Color is used for the text in Inkscape, but the package 'color.sty' is not loaded}%
\renewcommand\color[2][]{}%
}%
\providecommand\transparent[1]{%
\errmessage{(Inkscape) Transparency is used (non-zero) for the text in Inkscape, but the package 'transparent.sty' is not loaded}%
\renewcommand\transparent[1]{}%
}%
\providecommand\rotatebox[2]{#2}%
\newcommand*\fsize{\dimexpr\f@size pt\relax}%
\newcommand*\lineheight[1]{\fontsize{\fsize}{#1\fsize}\selectfont}%
\ifx\svgwidth\undefined%
\setlength{\unitlength}{220.73231705bp}%
\ifx\svgscale\undefined%
\relax%
\else%
\setlength{\unitlength}{\unitlength * \real{\svgscale}}%
\fi%
\else%
\setlength{\unitlength}{\svgwidth}%
\fi%
\global\let\svgwidth\undefined%
\global\let\svgscale\undefined%
\makeatother%
\begin{picture}(1,0.3248728)%
\lineheight{1}%
\setlength\tabcolsep{0pt}%
\put(0,0){\includegraphics[width=\unitlength]{cycle2.eps}}%
\put(-0.09081244,0.57773466){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}1600 K\end{tabular}}}}%
\put(-0.07302308,0.57969106){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}400 K\end{tabular}}}}%
\put(-0.12758716,0.58803168){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}Q-=-1109 J\end{tabular}}}}%
\put(-0.13015149,0.59832427){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}A=3327 J\end{tabular}}}}%
\put(0.18294725,0.00997657){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}Q+=4436 J\end{tabular}}}}%
\end{picture}%
\endgroup%

View File

@ -0,0 +1,63 @@
%% Creator: Inkscape 1.0.2 (e86c870879, 2021-01-15), www.inkscape.org
%% PDF/EPS/PS + LaTeX output extension by Johan Engelen, 2010
%% Accompanies image file 'cycle2.eps' (pdf, eps, ps)
%%
%% To include the image in your LaTeX document, write
%% \input{<filename>.pdf_tex}
%% instead of
%% \includegraphics{<filename>.pdf}
%% To scale the image, write
%% \def\svgwidth{<desired width>}
%% \input{<filename>.pdf_tex}
%% instead of
%% \includegraphics[width=<desired width>]{<filename>.pdf}
%%
%% Images with a different path to the parent latex file can
%% be accessed with the `import' package (which may need to be
%% installed) using
%% \usepackage{import}
%% in the preamble, and then including the image with
%% \import{<path to file>}{<filename>.pdf_tex}
%% Alternatively, one can specify
%% \graphicspath{{<path to file>/}}
%%
%% For more information, please see info/svg-inkscape on CTAN:
%% http://tug.ctan.org/tex-archive/info/svg-inkscape
%%
\begingroup%
\makeatletter%
\providecommand\color[2][]{%
\errmessage{(Inkscape) Color is used for the text in Inkscape, but the package 'color.sty' is not loaded}%
\renewcommand\color[2][]{}%
}%
\providecommand\transparent[1]{%
\errmessage{(Inkscape) Transparency is used (non-zero) for the text in Inkscape, but the package 'transparent.sty' is not loaded}%
\renewcommand\transparent[1]{}%
}%
\providecommand\rotatebox[2]{#2}%
\newcommand*\fsize{\dimexpr\f@size pt\relax}%
\newcommand*\lineheight[1]{\fontsize{\fsize}{#1\fsize}\selectfont}%
\ifx\svgwidth\undefined%
\setlength{\unitlength}{220.73231705bp}%
\ifx\svgscale\undefined%
\relax%
\else%
\setlength{\unitlength}{\unitlength * \real{\svgscale}}%
\fi%
\else%
\setlength{\unitlength}{\svgwidth}%
\fi%
\global\let\svgwidth\undefined%
\global\let\svgscale\undefined%
\makeatother%
\begin{picture}(1,0.3248728)%
\lineheight{1}%
\setlength\tabcolsep{0pt}%
\put(0,0){\includegraphics[width=\unitlength]{cycle2.eps}}%
\put(-0.09081244,0.57773466){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}1600 K\end{tabular}}}}%
\put(-0.07302308,0.57969106){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}400 K\end{tabular}}}}%
\put(-0.12758716,0.58803168){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}Q-=-1109 J\end{tabular}}}}%
\put(-0.13015149,0.59832427){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}A=3327 J\end{tabular}}}}%
\put(0.18294725,0.00997657){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}Q+=4436 J\end{tabular}}}}%
\end{picture}%
\endgroup%

View File

@ -0,0 +1,198 @@
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<svg
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:cc="http://creativecommons.org/ns#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:svg="http://www.w3.org/2000/svg"
xmlns="http://www.w3.org/2000/svg"
xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
width="210mm"
height="297mm"
viewBox="0 0 210 297"
version="1.1"
id="svg8"
inkscape:version="1.0.2 (e86c870879, 2021-01-15)"
sodipodi:docname="cycle2.svg">
<defs
id="defs2">
<rect
x="59.937914"
y="20.739614"
width="29.029567"
height="5.2362938"
id="rect1321" />
<rect
x="53.837845"
y="41.407631"
width="29.231069"
height="7.3871984"
id="rect1315" />
<rect
x="30.689245"
y="40.896661"
width="35.157742"
height="9.7908561"
id="rect1309" />
<marker
style="overflow:visible;"
id="marker1177"
refX="0.0"
refY="0.0"
orient="auto"
inkscape:stockid="Arrow1Lend"
inkscape:isstock="true">
<path
transform="scale(0.8) rotate(180) translate(12.5,0)"
style="fill-rule:evenodd;stroke:#000000;stroke-width:1pt;stroke-opacity:1;fill:#000000;fill-opacity:1"
d="M 0.0,0.0 L 5.0,-5.0 L -12.5,0.0 L 5.0,5.0 L 0.0,0.0 z "
id="path1175" />
</marker>
<marker
style="overflow:visible;"
id="Arrow1Lend"
refX="0.0"
refY="0.0"
orient="auto"
inkscape:stockid="Arrow1Lend"
inkscape:isstock="true">
<path
transform="scale(0.8) rotate(180) translate(12.5,0)"
style="fill-rule:evenodd;stroke:#000000;stroke-width:1pt;stroke-opacity:1;fill:#000000;fill-opacity:1"
d="M 0.0,0.0 L 5.0,-5.0 L -12.5,0.0 L 5.0,5.0 L 0.0,0.0 z "
id="path896" />
</marker>
<rect
x="65.510159"
y="29.720464"
width="20.666272"
height="7.1284303"
id="rect865" />
<rect
x="12.309253"
y="29.569322"
width="19.645599"
height="7.2931106"
id="rect859" />
<marker
style="overflow:visible"
id="marker1177-7"
refX="0"
refY="0"
orient="auto"
inkscape:stockid="Arrow1Lend"
inkscape:isstock="true">
<path
transform="matrix(-0.8,0,0,-0.8,-10,0)"
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:1pt;stroke-opacity:1"
d="M 0,0 5,-5 -12.5,0 5,5 Z"
id="path1175-5" />
</marker>
</defs>
<sodipodi:namedview
id="base"
pagecolor="#ffffff"
bordercolor="#666666"
borderopacity="1.0"
inkscape:pageopacity="0.0"
inkscape:pageshadow="2"
inkscape:zoom="2.131036"
inkscape:cx="204.582"
inkscape:cy="141.81667"
inkscape:document-units="mm"
inkscape:current-layer="layer1"
inkscape:document-rotation="0"
showgrid="false"
inkscape:window-width="1920"
inkscape:window-height="995"
inkscape:window-x="0"
inkscape:window-y="0"
inkscape:window-maximized="1" />
<metadata
id="metadata5">
<rdf:RDF>
<cc:Work
rdf:about="">
<dc:format>image/svg+xml</dc:format>
<dc:type
rdf:resource="http://purl.org/dc/dcmitype/StillImage" />
<dc:title></dc:title>
</cc:Work>
</rdf:RDF>
</metadata>
<g
inkscape:label="Calque 1"
inkscape:groupmode="layer"
id="layer1">
<rect
style="fill:none;stroke:#ff0000;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none"
id="rect835"
width="23.635927"
height="12.791574"
x="10.634826"
y="26.796684" />
<rect
style="fill:none;stroke:#0000ff;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
id="rect835-3"
width="23.635927"
height="12.791574"
x="63.868355"
y="26.796684" />
<text
xml:space="preserve"
id="text857"
style="font-style:normal;font-weight:normal;font-size:3.88056px;line-height:1.25;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;white-space:pre;shape-inside:url(#rect859);fill:#000000;fill-opacity:1;stroke:none;"
transform="translate(3.0633106,1.603302)"><tspan
x="12.308594"
y="33.001745"><tspan>1600 K</tspan></tspan></text>
<text
xml:space="preserve"
id="text863"
style="font-style:normal;font-weight:normal;font-size:3.88056px;line-height:1.25;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;white-space:pre;shape-inside:url(#rect865);fill:#000000;fill-opacity:1;stroke:none;"
transform="translate(4.4485583,1.4509583)"><tspan
x="65.509766"
y="33.154089"><tspan>400 K</tspan></tspan></text>
<circle
style="fill:none;stroke:#000000;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
id="path869"
cx="49.069561"
cy="33.192471"
r="7.7861185" />
<path
style="fill:none;stroke:#000000;stroke-width:0.264583px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;marker-end:url(#marker1177)"
d="m 34.350954,33.192471 h 6.848483"
id="path871" />
<path
style="fill:none;stroke:#000000;stroke-width:0.265;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1;marker-end:url(#Arrow1Lend)"
d="m 56.989999,33.192471 h 6.848483"
id="path871-6" />
<path
style="fill:none;stroke:#000000;stroke-width:0.264583px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;marker-end:url(#marker1177-7)"
d="m 53.748023,27.172559 4.666642,-5.012401"
id="path871-3" />
<text
xml:space="preserve"
id="text1313"
style="font-style:normal;font-weight:normal;font-size:3.88056px;line-height:1.25;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;white-space:pre;shape-inside:url(#rect1315);fill:#000000;fill-opacity:1;stroke:none;"
transform="translate(0.19968276,0.80147888)"><tspan
x="53.837891"
y="44.841589"><tspan>Q-=-1109 J</tspan></tspan></text>
<text
xml:space="preserve"
id="text1319"
style="font-style:normal;font-weight:normal;font-size:3.88056px;line-height:1.25;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;white-space:pre;shape-inside:url(#rect1321);display:inline;fill:#000000;fill-opacity:1;stroke:none;"><tspan
x="59.9375"
y="24.17362"><tspan>A=3327 J</tspan></tspan></text>
<text
xml:space="preserve"
style="font-style:normal;font-weight:normal;font-size:3.88056px;line-height:1.25;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;display:inline;fill:#000000;fill-opacity:1;stroke:none;stroke-width:0.264583"
x="24.380829"
y="45.814316"
id="text1435"><tspan
sodipodi:role="line"
id="tspan1433"
x="24.380829"
y="45.814316"
style="stroke-width:0.264583">Q+=4436 J</tspan></text>
</g>
</svg>

After

Width:  |  Height:  |  Size: 7.1 KiB

Binary file not shown.

Binary file not shown.

View File

@ -1055,6 +1055,88 @@
\end{Solution OS}
\begin{Solution OS}{35}
Comme la masse atomique du carbone vaut \SI{12}{uma} et celle de l'hydrogène \SI{1}{uma}, celle de la molécule de méthane (\(CH_4\)) vaut \SI{16}{uma}. Ainsi, sa masse molaire vaut \SI{16}{\gram\per\mol}. Si on a \SI{32}{\gram} de ce gaz, on a donc \SI{2}{\mol} de \(CH_4\).
\subsubsection*{Compression isotherme}
Avec une température de 273 + 60 = \SI{333}{\kelvin}, on peut alors calculer les volumes~:
\begin{align*}
V_1&=\frac{n\cdot R\cdot T}{p_1}=\frac{2\cdot 8,31\cdot 333}{10^5}=\SI{0,055}{\metre\cubed}\\
V_2&=\frac{n\cdot R\cdot T}{p_2}=\frac{2\cdot 8,31\cdot 333}{5\cdot 10^5}=\SI{0,011}{\metre\cubed}
\end{align*}
Le travail isotherme se calcule alors aisément par~:
\begin{align*}
A&=n\cdot R\cdot T\cdot ln(\frac{V_2}{V_1})\\
&=2\cdot 8,31\cdot 333\cdot ln(\frac{0,011}{0,055}=\SI{-8907}{\joule}
\end{align*}
Comme la compression est isotherme, on a aussi~:
\[\Delta U = 0\;\text{et}\;Q=A=\SI{-8907}{\joule}\]
\subsubsection*{Compression adiabatique}
La compression adiabatique se fait de l'état 2 à l'état 3. Comme vu précédemment, le volume de l'état 2 est \(V_2=\SI{0,011}{\metre\cubed}\).
Des propriétés de la transformation adiabatique, on tire alors~:
\begin{align*}
p_2\cdot V_2&=p_3\cdot V_3\;\Rightarrow\; 5\cdot 0,011^{4/3}=30\cdot V_3^{4/3}\\
V_3^{4/3}&=4,1\cdot 10^{-4}\;\Rightarrow\;V_3=\SI{2,87e-3}{\metre\cubed}
\end{align*}
Par la loi des gaz parfaits, on en tire que~:
\[T_3=\frac{p_3\cdot V_3}{n\cdot R}=\SI{518}{\kelvin}=\SI{245}{\celsius}\]
Le travail est alors~:
\begin{align*}
A&=-\frac{i}{2}\cdot (p_3\cdot V_3-p_2\cdot V_2)\\
&=-\frac{6}{2}\cdot (30\cdot 10^5\cdot 2,87\cdot 10^{-3}-5\cdot 10^5\cdot 0,011)\\
&=\SI{-9330}{\joule}
\end{align*}
Avec pour échange de chaleur et variation d'énergie interne~:
\[Q=0\;\text{et}\;\Delta U=-A=\SI{9330}{\joule}\]
\end{Solution OS}
\begin{Solution OS}{36}
Le tableau complété est le suivant :
\begin{center}
\begin{tabular}{|c|c|c|c|}
\hline
Transformation & \(\Delta U\) & \(A\) & \(Q\) \\
& J & J & J \\\hline
isotherme & 0 & -1109 & -1109 \\
adiabatique & 7200 & -7200 & 0 \\
isotherme & 0 & 4436 & 4436 \\
adiabatique & -7200 & 7200 & 0 \\
\hline
\(\sum\) & 0 & 3327 & \\
\hline
\end{tabular}
\end{center}
\smallskip
\begin{enumerate}
\item Les trois premières lignes sont justifiées par le premier principe. Pour la dernière, on a utilisé le fait que la somme des variations des énergies internes sur un cycle fermé est nulle, puisqu'on se retrouve dans l'état initial. Ainsi :
\[\sum \Delta U = 0 + 7200 + 0 -7200=0\]
\item le rendement est donné par :
\[\eta = \frac{\sum A}{\sum Q_+}=\frac{3327}{4436}=75\%\]
\item La loi des gaz parfaits donne :
\[n\cdot R=\frac{p_0\cdot V_0}{T_0}=\frac{10^5\cdot 16\cdot 10^{-3}}{400}=4\]
\item La température à l'état initial \(T_0=\SI{400}{\kelvin}\) est donnée. La première transformation étant isotherme, on a que \(T_1=\SI{400}{\kelvin}\). Pour la seconde transformation, on peut écrire :
\begin{align*}
\Delta U&=\frac{i}{2}\cdot n\cdot R\cdot \Delta T\\
7200&=\frac{3}{2}\cdot 4\cdot \Delta T\\
\Delta T&=1200=T_2-T_1=T_2-400\\
&\Rightarrow\;T_2=\SI{1600}{\kelvin}
\end{align*}
Et comme la troisième est isotherme, on a : \(T_3=\SI{1600}{\kelvin}\). \item Le diagramme de bilan est donné à la figure \ref{exos:cycle1}.
\end{enumerate}
\begin{figure}
\def\svgwidth{7cm}
\begin{center}
%\input{Annexe-Exercices/Images/cycle2.eps_tex}
\includegraphics[scale=0.9]{cycle2.eps}
\end{center}
\caption{Bilan du cycle\label{exos:cycle1}}
\end{figure}
\end{Solution OS}
\begin{Solution OS}{37}
Procédons simplement au calcul de l'incertitude absolue.
\smallskip
@ -1102,7 +1184,7 @@
Cette expression est légèrement différente de la précédente. Mais, le second terme est négligeable en raison de la présence de l'incertitude sur le temps au carré. On voit ainsi qu'il est nécessaire de faire attention aux ordres de grandeurs.
\end{Solution OS}
\begin{Solution OS}{36}
\begin{Solution OS}{38}
\dots
\end{Solution OS}

File diff suppressed because it is too large Load Diff