Deux exos sur les cycles
This commit is contained in:
parent
747408f7b7
commit
de1d4b2fd8
@ -2769,6 +2769,121 @@ Les valeurs des c\oe fficients de dilatation thermique sont celles du tableau \r
|
||||
\end{solos}
|
||||
\end{exos}
|
||||
|
||||
\begin{exos}
|
||||
On fait passer \SI{32}{\gram} de méthane (\(CH_4\)) de l'état (\SI{1}{\bar} ; \SI{60}{\celsius}) à l'état (\SI{5}{\bar} ; \SI{60}{\celsius}) par une compression isotherme, puis, par une compression adiabatique, à l'état (\SI{30}{\bar} ; ?). Calculez our chaque transformations~:
|
||||
\begin{enumerate}
|
||||
\item le travail dépensé,
|
||||
\item la chaleur échangée avec le milieu extérieur et
|
||||
\item la variation d'énergie interne.
|
||||
\end{enumerate}
|
||||
\begin{solos}
|
||||
Comme la masse atomique du carbone vaut \SI{12}{uma} et celle de l'hydrogène \SI{1}{uma}, celle de la molécule de méthane (\(CH_4\)) vaut \SI{16}{uma}. Ainsi, sa masse molaire vaut \SI{16}{\gram\per\mol}. Si on a \SI{32}{\gram} de ce gaz, on a donc \SI{2}{\mol} de \(CH_4\).
|
||||
|
||||
\subsubsection*{Compression isotherme}
|
||||
Avec une température de 273 + 60 = \SI{333}{\kelvin}, on peut alors calculer les volumes~:
|
||||
\begin{align*}
|
||||
V_1&=\frac{n\cdot R\cdot T}{p_1}=\frac{2\cdot 8,31\cdot 333}{10^5}=\SI{0,055}{\metre\cubed}\\
|
||||
V_2&=\frac{n\cdot R\cdot T}{p_2}=\frac{2\cdot 8,31\cdot 333}{5\cdot 10^5}=\SI{0,011}{\metre\cubed}
|
||||
\end{align*}
|
||||
Le travail isotherme se calcule alors aisément par~:
|
||||
\begin{align*}
|
||||
A&=n\cdot R\cdot T\cdot ln(\frac{V_2}{V_1})\\
|
||||
&=2\cdot 8,31\cdot 333\cdot ln(\frac{0,011}{0,055}=\SI{-8907}{\joule}
|
||||
\end{align*}
|
||||
Comme la compression est isotherme, on a aussi~:
|
||||
\[\Delta U = 0\;\text{et}\;Q=A=\SI{-8907}{\joule}\]
|
||||
|
||||
\subsubsection*{Compression adiabatique}
|
||||
La compression adiabatique se fait de l'état 2 à l'état 3. Comme vu précédemment, le volume de l'état 2 est \(V_2=\SI{0,011}{\metre\cubed}\).
|
||||
|
||||
Des propriétés de la transformation adiabatique, on tire alors~:
|
||||
\begin{align*}
|
||||
p_2\cdot V_2&=p_3\cdot V_3\;\Rightarrow\; 5\cdot 0,011^{4/3}=30\cdot V_3^{4/3}\\
|
||||
V_3^{4/3}&=4,1\cdot 10^{-4}\;\Rightarrow\;V_3=\SI{2,87e-3}{\metre\cubed}
|
||||
\end{align*}
|
||||
Par la loi des gaz parfaits, on en tire que~:
|
||||
\[T_3=\frac{p_3\cdot V_3}{n\cdot R}=\SI{518}{\kelvin}=\SI{245}{\celsius}\]
|
||||
Le travail est alors~:
|
||||
\begin{align*}
|
||||
A&=-\frac{i}{2}\cdot (p_3\cdot V_3-p_2\cdot V_2)\\
|
||||
&=-\frac{6}{2}\cdot (30\cdot 10^5\cdot 2,87\cdot 10^{-3}-5\cdot 10^5\cdot 0,011)\\
|
||||
&=\SI{-9330}{\joule}
|
||||
\end{align*}
|
||||
Avec pour échange de chaleur et variation d'énergie interne~:
|
||||
\[Q=0\;\text{et}\;\Delta U=-A=\SI{9330}{\joule}\]
|
||||
\end{solos}
|
||||
\end{exos}
|
||||
|
||||
\begin{exos}
|
||||
Une machine thermique cyclique travaille avec un gaz parfait monoatomique qui subit quatre transformations. Le tableau suivant présente les échange d'énergie au cours du cycle.
|
||||
\begin{center}
|
||||
\begin{tabular}{|c|c|c|c|}
|
||||
\hline
|
||||
Transformation & \(\Delta U\) & \(A\) & \(Q\) \\
|
||||
& J & J & J \\\hline
|
||||
1 & 0 & -1109 & ? \\
|
||||
2 & 7200 & ? & 0 \\
|
||||
3 & ? & 4436 & 4436 \\
|
||||
4 & ? & 7200 & ? \\
|
||||
\hline
|
||||
\end{tabular}
|
||||
\end{center}
|
||||
\smallskip
|
||||
\begin{enumerate}
|
||||
\item Complétez le tableau en justifiant vos résultats.
|
||||
|
||||
\item Calculez le rendement.
|
||||
\item Le gaz se trouvant initialement dans l'état : \(V_0=\SI{16}{\deci\metre\cubed}\), \(p_0=\SI{1e5}{\pascal}\) et \(T_0=\SI{400}{\kelvin}\), calculez le produit \(n\cdot R\).
|
||||
\item Déterminez les températures à la fin des étapes 1, 2 et 3.
|
||||
\item Faites un diagramme de bilan du cycle.
|
||||
\end{enumerate}
|
||||
|
||||
\begin{solos}
|
||||
Le tableau complété est le suivant :
|
||||
\begin{center}
|
||||
\begin{tabular}{|c|c|c|c|}
|
||||
\hline
|
||||
Transformation & \(\Delta U\) & \(A\) & \(Q\) \\
|
||||
& J & J & J \\\hline
|
||||
isotherme & 0 & -1109 & -1109 \\
|
||||
adiabatique & 7200 & -7200 & 0 \\
|
||||
isotherme & 0 & 4436 & 4436 \\
|
||||
adiabatique & -7200 & 7200 & 0 \\
|
||||
\hline
|
||||
\(\sum\) & 0 & 3327 & \\
|
||||
\hline
|
||||
\end{tabular}
|
||||
\end{center}
|
||||
\smallskip
|
||||
\begin{enumerate}
|
||||
\item Les trois premières lignes sont justifiées par le premier principe. Pour la dernière, on a utilisé le fait que la somme des variations des énergies internes sur un cycle fermé est nulle, puisqu'on se retrouve dans l'état initial. Ainsi :
|
||||
\[\sum \Delta U = 0 + 7200 + 0 -7200=0\]
|
||||
\item le rendement est donné par :
|
||||
\[\eta = \frac{\sum A}{\sum Q_+}=\frac{3327}{4436}=75\%\]
|
||||
\item La loi des gaz parfaits donne :
|
||||
\[n\cdot R=\frac{p_0\cdot V_0}{T_0}=\frac{10^5\cdot 16\cdot 10^{-3}}{400}=4\]
|
||||
\item La température à l'état initial \(T_0=\SI{400}{\kelvin}\) est donnée. La première transformation étant isotherme, on a que \(T_1=\SI{400}{\kelvin}\). Pour la seconde transformation, on peut écrire :
|
||||
\begin{align*}
|
||||
\Delta U&=\frac{i}{2}\cdot n\cdot R\cdot \Delta T\\
|
||||
7200&=\frac{3}{2}\cdot 4\cdot \Delta T\\
|
||||
\Delta T&=1200=T_2-T_1=T_2-400\\
|
||||
&\Rightarrow\;T_2=\SI{1600}{\kelvin}
|
||||
\end{align*}
|
||||
Et comme la troisième est isotherme, on a : \(T_3=\SI{1600}{\kelvin}\). \item Le diagramme de bilan est donné à la figure \ref{exos:cycle1}.
|
||||
\end{enumerate}
|
||||
|
||||
\begin{figure}
|
||||
\def\svgwidth{7cm}
|
||||
\begin{center}
|
||||
%\input{Annexe-Exercices/Images/cycle2.eps_tex}
|
||||
\includegraphics[scale=0.9]{cycle2.eps}
|
||||
\end{center}
|
||||
\caption{Bilan du cycle\label{exos:cycle1}}
|
||||
\end{figure}
|
||||
|
||||
\end{solos}
|
||||
\end{exos}
|
||||
|
||||
%\begin{exos}
|
||||
% Un énoncé de test.
|
||||
% \begin{solos}
|
||||
|
@ -2769,6 +2769,120 @@ Les valeurs des c\oe fficients de dilatation thermique sont celles du tableau \r
|
||||
\end{solos}
|
||||
\end{exos}
|
||||
|
||||
\begin{exos}
|
||||
On fait passer \SI{32}{\gram} de méthane (\(CH_4\)) de l'état (\SI{1}{\bar} ; \SI{60}{\celsius}) à l'état (\SI{5}{\bar} ; \SI{60}{\celsius}) par une compression isotherme, puis, par une compression adiabatique, à l'état (\SI{30}{\bar} ; ?). Calculez our chaque transformations~:
|
||||
\begin{enumerate}
|
||||
\item le travail dépensé,
|
||||
\item la chaleur échangée avec le milieu extérieur et
|
||||
\item la variation d'énergie interne.
|
||||
\end{enumerate}
|
||||
\begin{solos}
|
||||
Comme la masse atomique du carbone vaut \SI{12}{uma} et celle de l'hydrogène \SI{1}{uma}, celle de la molécule de méthane (\(CH_4\)) vaut \SI{16}{uma}. Ainsi, sa masse molaire vaut \SI{16}{\gram\per\mol}. Si on a \SI{32}{\gram} de ce gaz, on a donc \SI{2}{\mol} de \(CH_4\).
|
||||
|
||||
\subsubsection*{Compression isotherme}
|
||||
Avec une température de 273 + 60 = \SI{333}{\kelvin}, on peut alors calculer les volumes~:
|
||||
\begin{align*}
|
||||
V_1&=\frac{n\cdot R\cdot T}{p_1}=\frac{2\cdot 8,31\cdot 333}{10^5}=\SI{0,055}{\metre\cubed}\\
|
||||
V_2&=\frac{n\cdot R\cdot T}{p_2}=\frac{2\cdot 8,31\cdot 333}{5\cdot 10^5}=\SI{0,011}{\metre\cubed}
|
||||
\end{align*}
|
||||
Le travail isotherme se calcule alors aisément par~:
|
||||
\begin{align*}
|
||||
A&=n\cdot R\cdot T\cdot ln(\frac{V_2}{V_1})\\
|
||||
&=2\cdot 8,31\cdot 333\cdot ln(\frac{0,011}{0,055}=\SI{-8907}{\joule}
|
||||
\end{align*}
|
||||
Comme la compression est isotherme, on a aussi~:
|
||||
\[\Delta U = 0\;\text{et}\;Q=A=\SI{-8907}{\joule}\]
|
||||
|
||||
\subsubsection*{Compression adiabatique}
|
||||
La compression adiabatique se fait de l'état 2 à l'état 3. Comme vu précédemment, le volume de l'état 2 est \(V_2=\SI{0,011}{\metre\cubed}\).
|
||||
|
||||
Des propriétés de la transformation adiabatique, on tire alors~:
|
||||
\begin{align*}
|
||||
p_2\cdot V_2&=p_3\cdot V_3\;\Rightarrow\; 5\cdot 0,011^{4/3}=30\cdot V_3^{4/3}\\
|
||||
V_3^{4/3}&=4,1\cdot 10^{-4}\;\Rightarrow\;V_3=\SI{2,87e-3}{\metre\cubed}
|
||||
\end{align*}
|
||||
Par la loi des gaz parfaits, on en tire que~:
|
||||
\[T_3=\frac{p_3\cdot V_3}{n\cdot R}=\SI{518}{\kelvin}=\SI{245}{\celsius}\]
|
||||
Le travail est alors~:
|
||||
\begin{align*}
|
||||
A&=-\frac{i}{2}\cdot (p_3\cdot V_3-p_2\cdot V_2)\\
|
||||
&=-\frac{6}{2}\cdot (30\cdot 10^5\cdot 2,87\cdot 10^{-3}-5\cdot 10^5\cdot 0,011)\\
|
||||
&=\SI{-9330}{\joule}
|
||||
\end{align*}
|
||||
Avec pour échange de chaleur et variation d'énergie interne~:
|
||||
\[Q=0\;\text{et}\;\Delta U=-A=\SI{9330}{\joule}\]
|
||||
\end{solos}
|
||||
\end{exos}
|
||||
|
||||
\begin{exos}
|
||||
Une machine thermique cyclique travaille avec un gaz parfait monoatomique qui subit quatre transformations. Le tableau suivant présente les échange d'énergie au cours du cycle.
|
||||
\begin{center}
|
||||
\begin{tabular}{|c|c|c|c|}
|
||||
\hline
|
||||
Transformation & \(\Delta U\) & \(A\) & \(Q\) \\
|
||||
& J & J & J \\\hline
|
||||
1 & 0 & -1109 & ? \\
|
||||
2 & 7200 & ? & 0 \\
|
||||
3 & ? & 4436 & 4436 \\
|
||||
4 & ? & 7200 & ? \\
|
||||
\hline
|
||||
\end{tabular}
|
||||
\end{center}
|
||||
\smallskip
|
||||
\begin{enumerate}
|
||||
\item Complétez le tableau en justifiant vos résultats.
|
||||
|
||||
\item Calculez le rendement.
|
||||
\item Le gaz se trouvant initialement dans l'état : \(V_0=\SI{16}{\deci\metre\cubed}\), \(p_0=\SI{1e5}{\pascal}\) et \(T_0=\SI{400}{\kelvin}\), calculez le produit \(n\cdot R\).
|
||||
\item Déterminez les températures à la fin des étapes 1, 2 et 3.
|
||||
\item Faites un diagramme de bilan du cycle.
|
||||
\end{enumerate}
|
||||
|
||||
\begin{solos}
|
||||
Le tableau complété est le suivant :
|
||||
\begin{center}
|
||||
\begin{tabular}{|c|c|c|c|}
|
||||
\hline
|
||||
Transformation & \(\Delta U\) & \(A\) & \(Q\) \\
|
||||
& J & J & J \\\hline
|
||||
isotherme & 0 & -1109 & -1109 \\
|
||||
adiabatique & 7200 & -7200 & 0 \\
|
||||
isotherme & 0 & 4436 & 4436 \\
|
||||
adiabatique & -7200 & 7200 & 0 \\
|
||||
\hline
|
||||
\(\sum\) & 0 & 3327 & \\
|
||||
\hline
|
||||
\end{tabular}
|
||||
\end{center}
|
||||
\smallskip
|
||||
\begin{enumerate}
|
||||
\item Les trois premières lignes sont justifiées par le premier principe. Pour la dernière, on a utilisé le fait que la somme des variations des énergies internes sur un cycle fermé est nulle, puisqu'on se retrouve dans l'état initial. Ainsi :
|
||||
\[\sum \Delta U = 0 + 7200 + 0 -7200=0\]
|
||||
\item le rendement est donné par :
|
||||
\[\eta = \frac{\sum A}{\sum Q_+}=\frac{3327}{4436}=75\%\]
|
||||
\item La loi des gaz parfaits donne :
|
||||
\[n\cdot R=\frac{p_0\cdot V_0}{T_0}=\frac{10^5\cdot 16\cdot 10^{-3}}{400}=4\]
|
||||
\item La température à l'état initial \(T_0=\SI{400}{\kelvin}\) est donnée. La première transformation étant isotherme, on a que \(T_1=\SI{400}{\kelvin}\). Pour la seconde transformation, on peut écrire :
|
||||
\begin{align*}
|
||||
\Delta U&=\frac{i}{2}\cdot n\cdot R\cdot \Delta T\\
|
||||
7200&=\frac{3}{2}\cdot 4\cdot \Delta T\\
|
||||
\Delta T&=1200=T_2-T_1=T_2-400\\
|
||||
&\Rightarrow\;T_2=\SI{1600}{\kelvin}
|
||||
\end{align*}
|
||||
Et comme la troisième est isotherme, on a : \(T_3=\SI{1600}{\kelvin}\). \item Le diagramme de bilan est donné à la figure \ref{exos:cycle1}.
|
||||
\end{enumerate}
|
||||
|
||||
\begin{figure}
|
||||
\def\svgwidth{7cm}
|
||||
\begin{center}
|
||||
\input{Annexe-Exercices/Images/cycle2.eps_tex}
|
||||
\end{center}
|
||||
\caption{Bilan du cycle\label{exos:cycle1}}
|
||||
\end{figure}
|
||||
|
||||
\end{solos}
|
||||
\end{exos}
|
||||
|
||||
%\begin{exos}
|
||||
% Un énoncé de test.
|
||||
% \begin{solos}
|
||||
|
281
Annexe-Exercices/Images/cycle1.eps
Normal file
281
Annexe-Exercices/Images/cycle1.eps
Normal file
@ -0,0 +1,281 @@
|
||||
%!PS-Adobe-3.0 EPSF-3.0
|
||||
%%Creator: cairo 1.16.0 (https://cairographics.org)
|
||||
%%CreationDate: Sun Nov 13 22:39:13 2022
|
||||
%%Pages: 1
|
||||
%%DocumentData: Clean7Bit
|
||||
%%LanguageLevel: 2
|
||||
%%BoundingBox: 0 0 221 67
|
||||
%%EndComments
|
||||
%%BeginProlog
|
||||
50 dict begin
|
||||
/q { gsave } bind def
|
||||
/Q { grestore } bind def
|
||||
/cm { 6 array astore concat } bind def
|
||||
/w { setlinewidth } bind def
|
||||
/J { setlinecap } bind def
|
||||
/j { setlinejoin } bind def
|
||||
/M { setmiterlimit } bind def
|
||||
/d { setdash } bind def
|
||||
/m { moveto } bind def
|
||||
/l { lineto } bind def
|
||||
/c { curveto } bind def
|
||||
/h { closepath } bind def
|
||||
/re { exch dup neg 3 1 roll 5 3 roll moveto 0 rlineto
|
||||
0 exch rlineto 0 rlineto closepath } bind def
|
||||
/S { stroke } bind def
|
||||
/f { fill } bind def
|
||||
/f* { eofill } bind def
|
||||
/n { newpath } bind def
|
||||
/W { clip } bind def
|
||||
/W* { eoclip } bind def
|
||||
/BT { } bind def
|
||||
/ET { } bind def
|
||||
/BDC { mark 3 1 roll /BDC pdfmark } bind def
|
||||
/EMC { mark /EMC pdfmark } bind def
|
||||
/cairo_store_point { /cairo_point_y exch def /cairo_point_x exch def } def
|
||||
/Tj { show currentpoint cairo_store_point } bind def
|
||||
/TJ {
|
||||
{
|
||||
dup
|
||||
type /stringtype eq
|
||||
{ show } { -0.001 mul 0 cairo_font_matrix dtransform rmoveto } ifelse
|
||||
} forall
|
||||
currentpoint cairo_store_point
|
||||
} bind def
|
||||
/cairo_selectfont { cairo_font_matrix aload pop pop pop 0 0 6 array astore
|
||||
cairo_font exch selectfont cairo_point_x cairo_point_y moveto } bind def
|
||||
/Tf { pop /cairo_font exch def /cairo_font_matrix where
|
||||
{ pop cairo_selectfont } if } bind def
|
||||
/Td { matrix translate cairo_font_matrix matrix concatmatrix dup
|
||||
/cairo_font_matrix exch def dup 4 get exch 5 get cairo_store_point
|
||||
/cairo_font where { pop cairo_selectfont } if } bind def
|
||||
/Tm { 2 copy 8 2 roll 6 array astore /cairo_font_matrix exch def
|
||||
cairo_store_point /cairo_font where { pop cairo_selectfont } if } bind def
|
||||
/g { setgray } bind def
|
||||
/rg { setrgbcolor } bind def
|
||||
/d1 { setcachedevice } bind def
|
||||
/cairo_data_source {
|
||||
CairoDataIndex CairoData length lt
|
||||
{ CairoData CairoDataIndex get /CairoDataIndex CairoDataIndex 1 add def }
|
||||
{ () } ifelse
|
||||
} def
|
||||
/cairo_flush_ascii85_file { cairo_ascii85_file status { cairo_ascii85_file flushfile } if } def
|
||||
/cairo_image { image cairo_flush_ascii85_file } def
|
||||
/cairo_imagemask { imagemask cairo_flush_ascii85_file } def
|
||||
%%EndProlog
|
||||
%%BeginSetup
|
||||
%%BeginResource: font BitstreamVeraSans-Roman
|
||||
11 dict begin
|
||||
/FontType 42 def
|
||||
/FontName /BitstreamVeraSans-Roman def
|
||||
/PaintType 0 def
|
||||
/FontMatrix [ 1 0 0 1 0 0 ] def
|
||||
/FontBBox [ 0 0 0 0 ] def
|
||||
/Encoding 256 array def
|
||||
0 1 255 { Encoding exch /.notdef put } for
|
||||
Encoding 32 /space put
|
||||
Encoding 48 /zero put
|
||||
Encoding 49 /one put
|
||||
Encoding 50 /two put
|
||||
Encoding 52 /four put
|
||||
Encoding 54 /six put
|
||||
Encoding 65 /A put
|
||||
Encoding 75 /K put
|
||||
Encoding 81 /Q put
|
||||
/CharStrings 10 dict dup begin
|
||||
/.notdef 0 def
|
||||
/one 1 def
|
||||
/six 2 def
|
||||
/zero 3 def
|
||||
/space 4 def
|
||||
/K 5 def
|
||||
/four 6 def
|
||||
/Q 7 def
|
||||
/two 8 def
|
||||
/A 9 def
|
||||
end readonly def
|
||||
/sfnts [
|
||||
<00010000000900800003001063767420ffd31d3900000770000001fc6670676de7b4f1c40000
|
||||
096c0000008b676c7966938de21a0000009c000006d468656164dd84a2d0000009f800000036
|
||||
686865611045076d00000a3000000024686d747831cf04a300000a54000000286c6f636108e6
|
||||
06f200000a7c000000166d6178700445063a00000a9400000020707265703b07f10000000ab4
|
||||
0000056800020066fe96046605a400030007001a400c04fb0006fb0108057f0204002fc4d4ec
|
||||
310010d4ecd4ec301311211125211121660400fc73031bfce5fe96070ef8f2720629000100e1
|
||||
0000045a05d5000a004b40154203a00402a005810700a009081f061c03001f010b10d4ecc4fc
|
||||
ec31002fec32f4ecd4ec304b53585922014bb00f5458bd000bffc00001000b000b0040381137
|
||||
3859b40f030f04025d3721110535253311211521fe014afe990165ca014afca4aa047348b848
|
||||
fad5aa0000000002008fffe3049605f0000b0024005840241306000d860c00a01606a01c16a5
|
||||
10a00c8922911c8c250c22091c191e131c03211f1b2510fcececf4ece4310010e4f4e4fce410
|
||||
ee10ee10ee111239304014cb00cb01cd02cd03cd04cb05cb0607a41eb21e025d015d01220615
|
||||
141633323635342601152e01232202033e0133320015140023200011100021321602a4889f9f
|
||||
88889f9f01094c9b4cc8d30f3bb26be10105fef0e2fefdfeee0150011b4c9b033bbaa2a1bbbb
|
||||
a1a2ba0279b82426fef2feef575dfeefebe6feea018d0179016201a51e00000000020087ffe3
|
||||
048f05f0000b00170023401306a01200a00c91128c18091c0f1e031c151b1810fcecf4ec3100
|
||||
10e4f4ec10ee30012202111012333212111002273200111000232200111000028b9c9d9d9c9d
|
||||
9d9d9dfb0109fef7fbfbfef701090550fecdfeccfecdfecd0133013301340133a0fe73fe86fe
|
||||
87fe73018d0179017a018d00000100c90000056a05d5000a00ef402808110506050711060605
|
||||
0311040504021105050442080502030300af09060501040608011c00040b10fcec32d4c41139
|
||||
31002f3cec321739304b5358071004ed071005ed071005ed071004ed5922b2080301015d4092
|
||||
140201040209081602280528083702360534084702460543085502670276027705830288058f
|
||||
0894029b08e702150603090509061b031907050a030a07180328052b062a0736043605360635
|
||||
07300c41034004450540064007400c62036004680567077705700c8b038b058e068f078f0c9a
|
||||
039d069d07b603b507c503c507d703d607e803e904e805ea06f703f805f9062c5d71005d7113
|
||||
33110121090121011123c9ca029e0104fd1b031afef6fd33ca05d5fd890277fd48fce302cffd
|
||||
3100000000020064000004a405d50002000d008c401d010d030d0003030d4200030b07a00501
|
||||
038109010c0a001c0608040c0e10dcd43cc4ec32113931002fe4d43cec321239304b53580710
|
||||
04c9071005c95922014bb00b544bb00d545b58bd000e00400001000e000effc0381137385940
|
||||
2a0b002a0048005900690077008a000716012b0026012b0336014e014f0c4f0d560166017501
|
||||
7a0385010d5d005d09012103331133152311231121350306fe0201fe35fed5d5c9fd5e0525fc
|
||||
e303cdfc33a8fea00160c300000000020073fef805d905f0000b001d0052402a1110020f010c
|
||||
0d0c0e010d0d0c420f1e0c06951200951891128c0d1e0d1b0f0c0309191b33031915101e10fc
|
||||
ecfcec1139391139310010c4e4f4ec10ee391239304b5358071005ed071005ed173959220122
|
||||
001110003332001110001301232706062320001110002120001110020327dcfefd0103dcdc01
|
||||
01feff3f010af4dd212310fec5fe870179013b013a0178d1054cfeb8fee5fee6feb80148011a
|
||||
011b0148facffeddef020201a50161016201a5fe5bfe9efefcfe8e00000100960000044a05f0
|
||||
001c00a54027191a1b03181c11050400110505044210a111940da014910400a00200100a0201
|
||||
0a1c171003061d10fcc4d4ecc0c011123931002fec32f4ecf4ec304b5358071005ed0705ed11
|
||||
17395922014bb015544bb016545b4bb014545b58bd001d00400001001d001dffc03811373859
|
||||
40325504560556077a047a05761b87190704000419041a041b051c74007606751a731b741c82
|
||||
008619821a821b821ca800a81b115d005d25211521353600373e0135342623220607353e0133
|
||||
3204151406070600018902c1fc4c73018d33614da7865fd3787ad458e80114455b19fef4aaaa
|
||||
aa7701913a6d974977964243cc3132e8c25ca5701dfeeb000000000200100000056805d50002
|
||||
000a00ba404100110100040504021105050401110a030a0011020003030a0711050406110505
|
||||
040911030a08110a030a4200030795010381090509080706040302010009050a0b10d4c41739
|
||||
31002f3ce4d4ec1239304b5358071005ed0705ed071005ed0705ed071008ed071005ed071005
|
||||
ed071008ed5922b2200c01015d403a0f005800760070008c0005070108020603090416011902
|
||||
56015802500c67016802780176027c0372047707780887018802800c980299039604175d005d
|
||||
090121013301230321032302bcfeee0225fe7be50239d288fd5f88d5050efd1903aefa2b017f
|
||||
fe810000013500b800cb00cb00c100aa009c01a600b800660000007100cb00a002b200850075
|
||||
00b800c301cb0189022d00cb00a600f000d300aa008700cb03aa0400014a003300cb000000d9
|
||||
050200f4015400b4009c01390114013907060400044e04b4045204b804e704cd0037047304cd
|
||||
04600473013303a2055605a60556053903c5021200c9001f00b801df007300ba03e9033303bc
|
||||
0444040e00df03cd03aa00e503aa0404000000cb008f00a4007b00b80014016f007f027b0252
|
||||
008f00c705cd009a009a006f00cb00cd019e01d300f000ba018300d5009803040248009e01d5
|
||||
00c100cb00f600830354027f00000333026600d300c700a400cd008f009a0073040005d5010a
|
||||
00fe022b00a400b4009c00000062009c0000001d032d05d505d505d505f0007f007b005400a4
|
||||
06b80614072301d300b800cb00a601c301ec069300a000d3035c037103db0185042304a80448
|
||||
008f0139011401390360008f05d5019a0614072306660179046004600460047b009c00000277
|
||||
046001aa00e904600762007b00c5007f027b000000b4025205cd006600bc00660077061000cd
|
||||
013b01850389008f007b0000001d00cd074a042f009c009c0000077d006f0000006f0335006a
|
||||
006f007b00ae00b2002d0396008f027b00f600830354063705f6008f009c04e10266008f018d
|
||||
02f600cd03440029006604ee007300001400b6060504030201002c2010b002254964b0405158
|
||||
20c859212d2cb002254964b040515820c859212d2c20100720b00050b00d7920b8ffff505804
|
||||
1b0559b0051cb0032508b0042523e120b00050b00d7920b8ffff5058041b0559b0051cb00325
|
||||
08e12d2c4b505820b0fd454459212d2cb002254560442d2c4b5358b00225b002254544592121
|
||||
2d2c45442d000001000000020000370e42405f0f3cf5001f080000000000bab9f0b800000000
|
||||
bac26791fe89fe1d0a4c076d00000008000100000000000000010000076dfe1d00000abcfe89
|
||||
fe890a4c00010000000000000000000000000000000a04cd0066051700e10517008f05170087
|
||||
028b0000053f00c905170064064c0073051700960579001000000022006000cc010e010e01a2
|
||||
0206026c02f0036a000000010000000a004d0007004200040002001000400007000004150568
|
||||
00030001b8028040fffbfe03fa1403f92503f83203f79603f60e03f5fe03f4fe03f32503f20e
|
||||
03f19603f02503ef8a4105effe03ee9603ed9603ecfa03ebfa03eafe03e93a03e84203e7fe03
|
||||
e63203e5e45305e59603e48a4105e45303e3e22f05e3fa03e22f03e1fe03e0fe03df3203de14
|
||||
03dd9603dcfe03db1203da7d03d9bb03d8fe03d68a4105d67d03d5d44705d57d03d44703d3d2
|
||||
1b05d3fe03d21b03d1fe03d0fe03cffe03cefe03cd9603cccb1e05ccfe03cb1e03ca3203c9fe
|
||||
03c6851105c61c03c51603c4fe03c3fe03c2fe03c1fe03c0fe03bffe03befe03bdfe03bcfe03
|
||||
bbfe03ba1103b9862505b9fe03b8b7bb05b8fe03b7b65d05b7bb03b78004b6b52505b65d40ff
|
||||
03b64004b52503b4fe03b39603b2fe03b1fe03b0fe03affe03ae6403ad0e03acab2505ac6403
|
||||
abaa1205ab2503aa1203a98a4105a9fa03a8fe03a7fe03a6fe03a51203a4fe03a3a20e05a332
|
||||
03a20e03a16403a08a4105a096039ffe039e9d0c059efe039d0c039c9b19059c64039b9a1005
|
||||
9b19039a1003990a0398fe0397960d0597fe03960d03958a410595960394930e05942803930e
|
||||
0392fa039190bb0591fe03908f5d0590bb039080048f8e25058f5d038f40048e25038dfe038c
|
||||
8b2e058cfe038b2e038a8625058a410389880b05891403880b03878625058764038685110586
|
||||
250385110384fe038382110583fe0382110381fe0380fe037ffe0340ff7e7d7d057efe037d7d
|
||||
037c64037b5415057b25037afe0379fe03780e03770c03760a0375fe0374fa0373fa0372fa03
|
||||
71fa0370fe036ffe036efe036c21036bfe036a1142056a530369fe03687d036711420566fe03
|
||||
65fe0364fe0363fe0362fe03613a0360fa035e0c035dfe035bfe035afe0359580a0559fa0358
|
||||
0a035716190557320356fe035554150555420354150353011005531803521403514a130551fe
|
||||
03500b034ffe034e4d10054efe034d10034cfe034b4a13054bfe034a4910054a1303491d0d05
|
||||
491003480d0347fe0346960345960344fe0343022d0543fa0342bb03414b0340fe033ffe033e
|
||||
3d12053e14033d3c0f053d12033c3b0d053c40ff0f033b0d033afe0339fe033837140538fa03
|
||||
3736100537140336350b05361003350b03341e03330d0332310b0532fe03310b03302f0b0530
|
||||
0d032f0b032e2d09052e10032d09032c32032b2a25052b64032a2912052a2503291203282725
|
||||
0528410327250326250b05260f03250b0324fe0323fe03220f03210110052112032064031ffa
|
||||
031e1d0d051e64031d0d031c1142051cfe031bfa031a42031911420519fe0318640317161905
|
||||
17fe031601100516190315fe0314fe0313fe031211420512fe0311022d05114203107d030f64
|
||||
030efe030d0c16050dfe030c0110050c16030bfe030a100309fe0308022d0508fe0307140306
|
||||
64030401100504fe03401503022d0503fe0302011005022d0301100300fe0301b80164858d01
|
||||
2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b
|
||||
2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b
|
||||
2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b
|
||||
2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b
|
||||
2b2b2b2b2b2b2b2b2b2b2b2b2b002b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b
|
||||
2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b
|
||||
2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b
|
||||
2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b
|
||||
2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b1d00>
|
||||
] def
|
||||
/f-0-0 currentdict end definefont pop
|
||||
%%EndResource
|
||||
%%EndSetup
|
||||
%%Page: 1 1
|
||||
%%BeginPageSetup
|
||||
%%PageBoundingBox: 0 0 221 67
|
||||
%%EndPageSetup
|
||||
q 0 0 221 67 rectclip
|
||||
1 0 0 -1 0 67 cm q
|
||||
1 0 0 rg
|
||||
2.834646 w
|
||||
0 J
|
||||
0 j
|
||||
[] 0.0 d
|
||||
4 M q 1 0 0 1 0 0 cm
|
||||
1.418 15.453 67 36.262 re S Q
|
||||
0 0 1 rg
|
||||
q 1 0 0 1 0 0 cm
|
||||
152.316 15.453 67 36.262 re S Q
|
||||
0 g
|
||||
BT
|
||||
11.000012 0 0 -11.000012 14.845262 37.588451 Tm
|
||||
/f-0-0 1 Tf
|
||||
(1600 K)Tj
|
||||
14.066635 0 Td
|
||||
(400 K)Tj
|
||||
ET
|
||||
q 1 0 0 1 0 0 cm
|
||||
132.438 33.586 m 132.438 45.773 122.555 55.656 110.367 55.656 c 98.176
|
||||
55.656 88.297 45.773 88.297 33.586 c 88.297 21.395 98.176 11.512 110.367
|
||||
11.512 c 122.555 11.512 132.438 21.395 132.438 33.586 c h
|
||||
132.438 33.586 m S Q
|
||||
0.749999 w
|
||||
q 1 0 0 1 0 0 cm
|
||||
68.645 33.586 m 88.059 33.586 l S Q
|
||||
80.559 33.586 m 77.559 36.586 l 88.059 33.586 l 77.559 30.586 l h
|
||||
80.559 33.586 m f*
|
||||
0.799999 w
|
||||
q -1 0 0 -1 0 0 cm
|
||||
-80.559 -33.586 m -77.559 -36.586 l -88.059 -33.586 l -77.559 -30.586 l
|
||||
h
|
||||
-80.559 -33.586 m S Q
|
||||
0.751181 w
|
||||
q 1 0 0 1 0 0 cm
|
||||
132.816 33.586 m 152.23 33.586 l S Q
|
||||
144.719 33.586 m 141.715 36.59 l 152.23 33.586 l 141.715 30.578 l h
|
||||
144.719 33.586 m f*
|
||||
0.80126 w
|
||||
q -1 0 0 -1 0 0 cm
|
||||
-144.719 -33.586 m -141.715 -36.59 l -152.23 -33.586 l -141.715 -30.578
|
||||
l h
|
||||
-144.719 -33.586 m S Q
|
||||
0.749999 w
|
||||
q 1 0 0 1 0 0 cm
|
||||
123.629 16.52 m 136.855 2.312 l S Q
|
||||
131.746 7.801 m 131.898 12.039 l 136.855 2.312 l 127.504 7.953 l h
|
||||
131.746 7.801 m f*
|
||||
0.585519 w
|
||||
q -0.931019 1 -1 -0.931019 0 0 cm
|
||||
-61.526 -74.464 m -59.332 -76.659 l -67.015 -74.464 l -59.329 -72.267 l
|
||||
h
|
||||
-61.526 -74.464 m S Q
|
||||
BT
|
||||
11.000012 0 0 -11.000012 58.265086 65.154879 Tm
|
||||
/f-0-0 1 Tf
|
||||
[(Q1)-4542(Q2)]TJ
|
||||
7.537069 5.19416 Td
|
||||
(A)Tj
|
||||
ET
|
||||
Q Q
|
||||
showpage
|
||||
%%Trailer
|
||||
end
|
||||
%%EOF
|
202
Annexe-Exercices/Images/cycle1.svg
Normal file
202
Annexe-Exercices/Images/cycle1.svg
Normal file
@ -0,0 +1,202 @@
|
||||
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||||
<svg
|
||||
xmlns:dc="http://purl.org/dc/elements/1.1/"
|
||||
xmlns:cc="http://creativecommons.org/ns#"
|
||||
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
|
||||
xmlns:svg="http://www.w3.org/2000/svg"
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
|
||||
xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
|
||||
width="210mm"
|
||||
height="297mm"
|
||||
viewBox="0 0 210 297"
|
||||
version="1.1"
|
||||
id="svg8"
|
||||
inkscape:version="1.0.2 (e86c870879, 2021-01-15)"
|
||||
sodipodi:docname="cycle1.svg">
|
||||
<defs
|
||||
id="defs2">
|
||||
<rect
|
||||
x="59.937914"
|
||||
y="20.739614"
|
||||
width="29.029567"
|
||||
height="5.2362938"
|
||||
id="rect1321" />
|
||||
<rect
|
||||
x="53.837845"
|
||||
y="41.407631"
|
||||
width="29.231069"
|
||||
height="7.3871984"
|
||||
id="rect1315" />
|
||||
<rect
|
||||
x="30.689245"
|
||||
y="40.896661"
|
||||
width="35.157742"
|
||||
height="9.7908561"
|
||||
id="rect1309" />
|
||||
<marker
|
||||
style="overflow:visible;"
|
||||
id="marker1177"
|
||||
refX="0.0"
|
||||
refY="0.0"
|
||||
orient="auto"
|
||||
inkscape:stockid="Arrow1Lend"
|
||||
inkscape:isstock="true">
|
||||
<path
|
||||
transform="scale(0.8) rotate(180) translate(12.5,0)"
|
||||
style="fill-rule:evenodd;stroke:#000000;stroke-width:1pt;stroke-opacity:1;fill:#000000;fill-opacity:1"
|
||||
d="M 0.0,0.0 L 5.0,-5.0 L -12.5,0.0 L 5.0,5.0 L 0.0,0.0 z "
|
||||
id="path1175" />
|
||||
</marker>
|
||||
<marker
|
||||
style="overflow:visible;"
|
||||
id="Arrow1Lend"
|
||||
refX="0.0"
|
||||
refY="0.0"
|
||||
orient="auto"
|
||||
inkscape:stockid="Arrow1Lend"
|
||||
inkscape:isstock="true">
|
||||
<path
|
||||
transform="scale(0.8) rotate(180) translate(12.5,0)"
|
||||
style="fill-rule:evenodd;stroke:#000000;stroke-width:1pt;stroke-opacity:1;fill:#000000;fill-opacity:1"
|
||||
d="M 0.0,0.0 L 5.0,-5.0 L -12.5,0.0 L 5.0,5.0 L 0.0,0.0 z "
|
||||
id="path896" />
|
||||
</marker>
|
||||
<rect
|
||||
x="65.510159"
|
||||
y="29.720464"
|
||||
width="20.666272"
|
||||
height="7.1284303"
|
||||
id="rect865" />
|
||||
<rect
|
||||
x="12.309253"
|
||||
y="29.569322"
|
||||
width="19.645599"
|
||||
height="7.2931106"
|
||||
id="rect859" />
|
||||
<marker
|
||||
style="overflow:visible"
|
||||
id="marker1177-7"
|
||||
refX="0"
|
||||
refY="0"
|
||||
orient="auto"
|
||||
inkscape:stockid="Arrow1Lend"
|
||||
inkscape:isstock="true">
|
||||
<path
|
||||
transform="matrix(-0.8,0,0,-0.8,-10,0)"
|
||||
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:1pt;stroke-opacity:1"
|
||||
d="M 0,0 5,-5 -12.5,0 5,5 Z"
|
||||
id="path1175-5" />
|
||||
</marker>
|
||||
</defs>
|
||||
<sodipodi:namedview
|
||||
id="base"
|
||||
pagecolor="#ffffff"
|
||||
bordercolor="#666666"
|
||||
borderopacity="1.0"
|
||||
inkscape:pageopacity="0.0"
|
||||
inkscape:pageshadow="2"
|
||||
inkscape:zoom="4.2620719"
|
||||
inkscape:cx="187.07816"
|
||||
inkscape:cy="138.2452"
|
||||
inkscape:document-units="mm"
|
||||
inkscape:current-layer="layer1"
|
||||
inkscape:document-rotation="0"
|
||||
showgrid="false"
|
||||
inkscape:window-width="1920"
|
||||
inkscape:window-height="995"
|
||||
inkscape:window-x="0"
|
||||
inkscape:window-y="0"
|
||||
inkscape:window-maximized="1" />
|
||||
<metadata
|
||||
id="metadata5">
|
||||
<rdf:RDF>
|
||||
<cc:Work
|
||||
rdf:about="">
|
||||
<dc:format>image/svg+xml</dc:format>
|
||||
<dc:type
|
||||
rdf:resource="http://purl.org/dc/dcmitype/StillImage" />
|
||||
<dc:title></dc:title>
|
||||
</cc:Work>
|
||||
</rdf:RDF>
|
||||
</metadata>
|
||||
<g
|
||||
inkscape:label="Calque 1"
|
||||
inkscape:groupmode="layer"
|
||||
id="layer1">
|
||||
<rect
|
||||
style="fill:none;stroke:#ff0000;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none"
|
||||
id="rect835"
|
||||
width="23.635927"
|
||||
height="12.791574"
|
||||
x="10.634826"
|
||||
y="26.796684" />
|
||||
<rect
|
||||
style="fill:none;stroke:#0000ff;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||
id="rect835-3"
|
||||
width="23.635927"
|
||||
height="12.791574"
|
||||
x="63.868355"
|
||||
y="26.796684" />
|
||||
<text
|
||||
xml:space="preserve"
|
||||
id="text857"
|
||||
style="font-style:normal;font-weight:normal;font-size:3.88056px;line-height:1.25;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;white-space:pre;shape-inside:url(#rect859);fill:#000000;fill-opacity:1;stroke:none;"
|
||||
transform="translate(3.0633106,1.603302)"><tspan
|
||||
x="12.308594"
|
||||
y="33.001745"><tspan>1600 K</tspan></tspan></text>
|
||||
<text
|
||||
xml:space="preserve"
|
||||
id="text863"
|
||||
style="font-style:normal;font-weight:normal;font-size:3.88056px;line-height:1.25;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;white-space:pre;shape-inside:url(#rect865);fill:#000000;fill-opacity:1;stroke:none;"
|
||||
transform="translate(4.4485583,1.4509583)"><tspan
|
||||
x="65.509766"
|
||||
y="33.154089"><tspan>400 K</tspan></tspan></text>
|
||||
<circle
|
||||
style="fill:none;stroke:#000000;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||
id="path869"
|
||||
cx="49.069561"
|
||||
cy="33.192471"
|
||||
r="7.7861185" />
|
||||
<path
|
||||
style="fill:none;stroke:#000000;stroke-width:0.264583px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;marker-end:url(#marker1177)"
|
||||
d="m 34.350954,33.192471 h 6.848483"
|
||||
id="path871" />
|
||||
<path
|
||||
style="fill:none;stroke:#000000;stroke-width:0.265;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1;marker-end:url(#Arrow1Lend)"
|
||||
d="m 56.989999,33.192471 h 6.848483"
|
||||
id="path871-6" />
|
||||
<path
|
||||
style="fill:none;stroke:#000000;stroke-width:0.264583px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;marker-end:url(#marker1177-7)"
|
||||
d="m 53.748023,27.172559 4.666642,-5.012401"
|
||||
id="path871-3" />
|
||||
<text
|
||||
xml:space="preserve"
|
||||
id="text1307"
|
||||
style="font-style:normal;font-weight:normal;font-size:3.88056px;line-height:1.25;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;white-space:pre;shape-inside:url(#rect1309);fill:#000000;fill-opacity:1;stroke:none;" />
|
||||
<text
|
||||
xml:space="preserve"
|
||||
id="text1313"
|
||||
style="font-style:normal;font-weight:normal;font-size:3.88056px;line-height:1.25;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;white-space:pre;shape-inside:url(#rect1315);fill:#000000;fill-opacity:1;stroke:none;"
|
||||
transform="translate(0.25492602,-1.1307318)"><tspan
|
||||
x="53.837891"
|
||||
y="44.841589"><tspan>Q-=-1109 J</tspan></tspan></text>
|
||||
<text
|
||||
xml:space="preserve"
|
||||
id="text1319"
|
||||
style="font-style:normal;font-weight:normal;font-size:3.88056px;line-height:1.25;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;white-space:pre;shape-inside:url(#rect1321);fill:#000000;fill-opacity:1;stroke:none;"><tspan
|
||||
x="59.9375"
|
||||
y="24.17362"><tspan>A=3327 J</tspan></tspan></text>
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-style:normal;font-weight:normal;font-size:3.88056px;line-height:1.25;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;stroke-width:0.264583"
|
||||
x="24.18788"
|
||||
y="43.710857"
|
||||
id="text1435"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan1433"
|
||||
x="24.18788"
|
||||
y="43.710857"
|
||||
style="stroke-width:0.264583">Q+=4436 J</tspan></text>
|
||||
</g>
|
||||
</svg>
|
After Width: | Height: | Size: 7.3 KiB |
949
Annexe-Exercices/Images/cycle1.tex
Normal file
949
Annexe-Exercices/Images/cycle1.tex
Normal file
@ -0,0 +1,949 @@
|
||||
%LaTeX with PSTricks extensions
|
||||
%%Creator: Inkscape 1.0.2 (e86c870879, 2021-01-15)
|
||||
%%Please note this file requires PSTricks extensions
|
||||
\psset{xunit=.5pt,yunit=.5pt,runit=.5pt}
|
||||
\begin{pspicture}(793.7007874,1122.51968504)
|
||||
{
|
||||
\newrgbcolor{curcolor}{1 0 0}
|
||||
\pscustom[linewidth=3.77952756,linecolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(40.19461684,1021.24087837)
|
||||
\lineto(129.52725508,1021.24087837)
|
||||
\lineto(129.52725508,972.89477371)
|
||||
\lineto(40.19461684,972.89477371)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 1}
|
||||
\pscustom[linewidth=3.77952756,linecolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(241.39220711,1021.24087837)
|
||||
\lineto(330.72484535,1021.24087837)
|
||||
\lineto(330.72484535,972.89477371)
|
||||
\lineto(241.39220711,972.89477371)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0}
|
||||
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(59.91754859,992.946404)
|
||||
\lineto(62.2808325,992.946404)
|
||||
\lineto(62.2808325,1001.10331422)
|
||||
\lineto(59.70986606,1000.58768864)
|
||||
\lineto(59.70986606,1001.90539845)
|
||||
\lineto(62.26650957,1002.42102403)
|
||||
\lineto(63.71312578,1002.42102403)
|
||||
\lineto(63.71312578,992.946404)
|
||||
\lineto(66.07640968,992.946404)
|
||||
\lineto(66.07640968,991.72895471)
|
||||
\lineto(59.91754859,991.72895471)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0}
|
||||
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(72.27107821,997.65148742)
|
||||
\curveto(71.62177192,997.65148742)(71.10614634,997.42948196)(70.72420147,996.98547104)
|
||||
\curveto(70.3470309,996.54146013)(70.15844562,995.93273548)(70.15844562,995.15929711)
|
||||
\curveto(70.15844562,994.39063305)(70.3470309,993.78190841)(70.72420147,993.33312318)
|
||||
\curveto(71.10614634,992.88911227)(71.62177192,992.66710681)(72.27107821,992.66710681)
|
||||
\curveto(72.92038449,992.66710681)(73.43362292,992.88911227)(73.81079348,993.33312318)
|
||||
\curveto(74.19273836,993.78190841)(74.38371079,994.39063305)(74.38371079,995.15929711)
|
||||
\curveto(74.38371079,995.93273548)(74.19273836,996.54146013)(73.81079348,996.98547104)
|
||||
\curveto(73.43362292,997.42948196)(72.92038449,997.65148742)(72.27107821,997.65148742)
|
||||
\closepath
|
||||
\moveto(75.14282623,1002.18469564)
|
||||
\lineto(75.14282623,1000.86698583)
|
||||
\curveto(74.7799786,1001.03886102)(74.41235666,1001.17015457)(74.03996041,1001.26086648)
|
||||
\curveto(73.67233846,1001.35157838)(73.30710368,1001.39693434)(72.94425605,1001.39693434)
|
||||
\curveto(71.98939386,1001.39693434)(71.25892429,1001.07466835)(70.75284733,1000.43013638)
|
||||
\curveto(70.25154469,999.7856044)(69.96508603,998.81164497)(69.89347137,997.50825809)
|
||||
\curveto(70.17515571,997.92362314)(70.52845472,998.24111482)(70.95336839,998.46073312)
|
||||
\curveto(71.37828206,998.68512573)(71.84616453,998.79732204)(72.3570158,998.79732204)
|
||||
\curveto(73.43123576,998.79732204)(74.27867595,998.47028174)(74.89933637,997.81620114)
|
||||
\curveto(75.5247711,997.16689486)(75.83748847,996.28126018)(75.83748847,995.15929711)
|
||||
\curveto(75.83748847,994.0612056)(75.51283533,993.18034523)(74.86352904,992.51671602)
|
||||
\curveto(74.21422275,991.8530868)(73.35007248,991.52127219)(72.27107821,991.52127219)
|
||||
\curveto(71.03453168,991.52127219)(70.08921811,991.99392897)(69.43513752,992.93924253)
|
||||
\curveto(68.78105692,993.88933041)(68.45401662,995.26433195)(68.45401662,997.06424717)
|
||||
\curveto(68.45401662,998.75435324)(68.85505874,1000.10070892)(69.65714297,1001.10331422)
|
||||
\curveto(70.45922721,1002.11069382)(71.53583432,1002.61438363)(72.88696432,1002.61438363)
|
||||
\curveto(73.24981195,1002.61438363)(73.61504673,1002.57857629)(73.98266867,1002.50696163)
|
||||
\curveto(74.35506493,1002.43534697)(74.74178411,1002.32792497)(75.14282623,1002.18469564)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0}
|
||||
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(81.42343235,1001.468549)
|
||||
\curveto(80.67863984,1001.468549)(80.11765831,1001.10092706)(79.74048775,1000.36568318)
|
||||
\curveto(79.36809149,999.63521361)(79.18189337,998.53473494)(79.18189337,997.06424717)
|
||||
\curveto(79.18189337,995.59853372)(79.36809149,994.49805505)(79.74048775,993.76281117)
|
||||
\curveto(80.11765831,993.0323416)(80.67863984,992.66710681)(81.42343235,992.66710681)
|
||||
\curveto(82.17299916,992.66710681)(82.7339807,993.0323416)(83.10637695,993.76281117)
|
||||
\curveto(83.48354751,994.49805505)(83.6721328,995.59853372)(83.6721328,997.06424717)
|
||||
\curveto(83.6721328,998.53473494)(83.48354751,999.63521361)(83.10637695,1000.36568318)
|
||||
\curveto(82.7339807,1001.10092706)(82.17299916,1001.468549)(81.42343235,1001.468549)
|
||||
\closepath
|
||||
\moveto(81.42343235,1002.61438363)
|
||||
\curveto(82.62178439,1002.61438363)(83.53606493,1002.13933969)(84.16627398,1001.18925181)
|
||||
\curveto(84.80125733,1000.24393825)(85.11874901,998.8689367)(85.11874901,997.06424717)
|
||||
\curveto(85.11874901,995.26433195)(84.80125733,993.88933041)(84.16627398,992.93924253)
|
||||
\curveto(83.53606493,991.99392897)(82.62178439,991.52127219)(81.42343235,991.52127219)
|
||||
\curveto(80.22508031,991.52127219)(79.30841261,991.99392897)(78.67342925,992.93924253)
|
||||
\curveto(78.04322021,993.88933041)(77.72811569,995.26433195)(77.72811569,997.06424717)
|
||||
\curveto(77.72811569,998.8689367)(78.04322021,1000.24393825)(78.67342925,1001.18925181)
|
||||
\curveto(79.30841261,1002.13933969)(80.22508031,1002.61438363)(81.42343235,1002.61438363)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0}
|
||||
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(90.75482405,1001.468549)
|
||||
\curveto(90.01003155,1001.468549)(89.44905001,1001.10092706)(89.07187945,1000.36568318)
|
||||
\curveto(88.6994832,999.63521361)(88.51328507,998.53473494)(88.51328507,997.06424717)
|
||||
\curveto(88.51328507,995.59853372)(88.6994832,994.49805505)(89.07187945,993.76281117)
|
||||
\curveto(89.44905001,993.0323416)(90.01003155,992.66710681)(90.75482405,992.66710681)
|
||||
\curveto(91.50439087,992.66710681)(92.0653724,993.0323416)(92.43776865,993.76281117)
|
||||
\curveto(92.81493922,994.49805505)(93.0035245,995.59853372)(93.0035245,997.06424717)
|
||||
\curveto(93.0035245,998.53473494)(92.81493922,999.63521361)(92.43776865,1000.36568318)
|
||||
\curveto(92.0653724,1001.10092706)(91.50439087,1001.468549)(90.75482405,1001.468549)
|
||||
\closepath
|
||||
\moveto(90.75482405,1002.61438363)
|
||||
\curveto(91.95317609,1002.61438363)(92.86745664,1002.13933969)(93.49766568,1001.18925181)
|
||||
\curveto(94.13264903,1000.24393825)(94.45014071,998.8689367)(94.45014071,997.06424717)
|
||||
\curveto(94.45014071,995.26433195)(94.13264903,993.88933041)(93.49766568,992.93924253)
|
||||
\curveto(92.86745664,991.99392897)(91.95317609,991.52127219)(90.75482405,991.52127219)
|
||||
\curveto(89.55647201,991.52127219)(88.63980431,991.99392897)(88.00482096,992.93924253)
|
||||
\curveto(87.37461192,993.88933041)(87.05950739,995.26433195)(87.05950739,997.06424717)
|
||||
\curveto(87.05950739,998.8689367)(87.37461192,1000.24393825)(88.00482096,1001.18925181)
|
||||
\curveto(88.63980431,1002.13933969)(89.55647201,1002.61438363)(90.75482405,1002.61438363)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0}
|
||||
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(101.52566802,1002.42102403)
|
||||
\lineto(102.97228423,1002.42102403)
|
||||
\lineto(102.97228423,997.90213874)
|
||||
\lineto(107.77046671,1002.42102403)
|
||||
\lineto(109.63244797,1002.42102403)
|
||||
\lineto(104.32580138,997.43664343)
|
||||
\lineto(110.01200569,991.72895471)
|
||||
\lineto(108.10705563,991.72895471)
|
||||
\lineto(102.97228423,996.87804905)
|
||||
\lineto(102.97228423,991.72895471)
|
||||
\lineto(101.52566802,991.72895471)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0}
|
||||
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(269.95238825,1001.16060576)
|
||||
\lineto(266.30004039,995.45291705)
|
||||
\lineto(269.95238825,995.45291705)
|
||||
\closepath
|
||||
\moveto(269.57283053,1002.42102384)
|
||||
\lineto(271.39184299,1002.42102384)
|
||||
\lineto(271.39184299,995.45291705)
|
||||
\lineto(272.91723533,995.45291705)
|
||||
\lineto(272.91723533,994.24979069)
|
||||
\lineto(271.39184299,994.24979069)
|
||||
\lineto(271.39184299,991.72895452)
|
||||
\lineto(269.95238825,991.72895452)
|
||||
\lineto(269.95238825,994.24979069)
|
||||
\lineto(265.1255599,994.24979069)
|
||||
\lineto(265.1255599,995.64627664)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0}
|
||||
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(278.40291868,1001.46854881)
|
||||
\curveto(277.65812618,1001.46854881)(277.09714464,1001.10092687)(276.71997408,1000.36568299)
|
||||
\curveto(276.34757783,999.63521342)(276.1613797,998.53473475)(276.1613797,997.06424698)
|
||||
\curveto(276.1613797,995.59853353)(276.34757783,994.49805486)(276.71997408,993.76281098)
|
||||
\curveto(277.09714464,993.03234141)(277.65812618,992.66710662)(278.40291868,992.66710662)
|
||||
\curveto(279.1524855,992.66710662)(279.71346703,993.03234141)(280.08586328,993.76281098)
|
||||
\curveto(280.46303385,994.49805486)(280.65161913,995.59853353)(280.65161913,997.06424698)
|
||||
\curveto(280.65161913,998.53473475)(280.46303385,999.63521342)(280.08586328,1000.36568299)
|
||||
\curveto(279.71346703,1001.10092687)(279.1524855,1001.46854881)(278.40291868,1001.46854881)
|
||||
\closepath
|
||||
\moveto(278.40291868,1002.61438344)
|
||||
\curveto(279.60127072,1002.61438344)(280.51555127,1002.1393395)(281.14576031,1001.18925162)
|
||||
\curveto(281.78074366,1000.24393806)(282.09823534,998.86893651)(282.09823534,997.06424698)
|
||||
\curveto(282.09823534,995.26433176)(281.78074366,993.88933022)(281.14576031,992.93924234)
|
||||
\curveto(280.51555127,991.99392878)(279.60127072,991.521272)(278.40291868,991.521272)
|
||||
\curveto(277.20456664,991.521272)(276.28789894,991.99392878)(275.65291559,992.93924234)
|
||||
\curveto(275.02270655,993.88933022)(274.70760202,995.26433176)(274.70760202,997.06424698)
|
||||
\curveto(274.70760202,998.86893651)(275.02270655,1000.24393806)(275.65291559,1001.18925162)
|
||||
\curveto(276.28789894,1002.1393395)(277.20456664,1002.61438344)(278.40291868,1002.61438344)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0}
|
||||
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(287.73430948,1001.46854881)
|
||||
\curveto(286.98951698,1001.46854881)(286.42853544,1001.10092687)(286.05136488,1000.36568299)
|
||||
\curveto(285.67896863,999.63521342)(285.4927705,998.53473475)(285.4927705,997.06424698)
|
||||
\curveto(285.4927705,995.59853353)(285.67896863,994.49805486)(286.05136488,993.76281098)
|
||||
\curveto(286.42853544,993.03234141)(286.98951698,992.66710662)(287.73430948,992.66710662)
|
||||
\curveto(288.4838763,992.66710662)(289.04485783,993.03234141)(289.41725408,993.76281098)
|
||||
\curveto(289.79442465,994.49805486)(289.98300993,995.59853353)(289.98300993,997.06424698)
|
||||
\curveto(289.98300993,998.53473475)(289.79442465,999.63521342)(289.41725408,1000.36568299)
|
||||
\curveto(289.04485783,1001.10092687)(288.4838763,1001.46854881)(287.73430948,1001.46854881)
|
||||
\closepath
|
||||
\moveto(287.73430948,1002.61438344)
|
||||
\curveto(288.93266153,1002.61438344)(289.84694207,1002.1393395)(290.47715111,1001.18925162)
|
||||
\curveto(291.11213446,1000.24393806)(291.42962614,998.86893651)(291.42962614,997.06424698)
|
||||
\curveto(291.42962614,995.26433176)(291.11213446,993.88933022)(290.47715111,992.93924234)
|
||||
\curveto(289.84694207,991.99392878)(288.93266153,991.521272)(287.73430948,991.521272)
|
||||
\curveto(286.53595744,991.521272)(285.61928974,991.99392878)(284.98430639,992.93924234)
|
||||
\curveto(284.35409735,993.88933022)(284.03899283,995.26433176)(284.03899283,997.06424698)
|
||||
\curveto(284.03899283,998.86893651)(284.35409735,1000.24393806)(284.98430639,1001.18925162)
|
||||
\curveto(285.61928974,1002.1393395)(286.53595744,1002.61438344)(287.73430948,1002.61438344)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0}
|
||||
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(298.50515525,1002.42102384)
|
||||
\lineto(299.95177146,1002.42102384)
|
||||
\lineto(299.95177146,997.90213855)
|
||||
\lineto(304.74995394,1002.42102384)
|
||||
\lineto(306.6119352,1002.42102384)
|
||||
\lineto(301.30528861,997.43664324)
|
||||
\lineto(306.99149292,991.72895452)
|
||||
\lineto(305.08654286,991.72895452)
|
||||
\lineto(299.95177146,996.87804886)
|
||||
\lineto(299.95177146,991.72895452)
|
||||
\lineto(298.50515525,991.72895452)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0}
|
||||
\pscustom[linewidth=3.77952756,linecolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(214.8876076,997.06782784)
|
||||
\curveto(214.8876076,1008.97026906)(207.71770254,1019.7008024)(196.72147785,1024.25541166)
|
||||
\curveto(185.72527558,1028.81001162)(173.0684439,1026.29166336)(164.65218326,1017.87540271)
|
||||
\curveto(146.11463014,999.3378496)(159.2405209,967.63997836)(185.45975813,967.63997836)
|
||||
\curveto(197.36219935,967.63997836)(208.09273268,974.80988343)(212.64734194,985.80610812)
|
||||
\curveto(217.20194191,996.80231039)(214.68359365,1009.45914206)(206.267333,1017.87540271)
|
||||
\curveto(197.85107235,1026.29166336)(185.19424067,1028.81001162)(174.19803841,1024.25541166)
|
||||
\curveto(163.20181371,1019.7008024)(156.03190865,1008.97026906)(156.03190865,997.06782784)
|
||||
\curveto(156.03190865,970.84859062)(187.72977988,957.72269985)(206.267333,976.26025297)
|
||||
\curveto(214.68359365,984.67651362)(217.20194191,997.33334529)(212.64734194,1008.32954756)
|
||||
\curveto(208.09273268,1019.32577226)(197.36219935,1026.49567732)(185.45975813,1026.49567732)
|
||||
\curveto(159.2405209,1026.49567732)(146.11463014,994.79780609)(164.65218326,976.26025297)
|
||||
\curveto(183.18973637,957.72269985)(214.8876076,970.84859062)(214.8876076,997.06782784)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0}
|
||||
\pscustom[linewidth=0.99999871,linecolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(129.83037732,997.06782614)
|
||||
\lineto(155.71440756,997.06782614)
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0}
|
||||
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(145.71442047,997.06782614)
|
||||
\lineto(141.71442564,993.06783131)
|
||||
\lineto(155.71440756,997.06782614)
|
||||
\lineto(141.71442564,1001.06782098)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0}
|
||||
\pscustom[linewidth=1.06666532,linecolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(145.71442047,997.06782614)
|
||||
\lineto(141.71442564,993.06783131)
|
||||
\lineto(155.71440756,997.06782614)
|
||||
\lineto(141.71442564,1001.06782098)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0}
|
||||
\pscustom[linewidth=1.00157475,linecolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(215.39527181,997.06782614)
|
||||
\lineto(241.27930205,997.06782614)
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0}
|
||||
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(231.26355456,997.06782614)
|
||||
\lineto(227.25725556,993.06152715)
|
||||
\lineto(241.27930205,997.06782614)
|
||||
\lineto(227.25725556,1001.07412514)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0}
|
||||
\pscustom[linewidth=1.06834643,linecolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(231.26355456,997.06782614)
|
||||
\lineto(227.25725556,993.06152715)
|
||||
\lineto(241.27930205,997.06782614)
|
||||
\lineto(227.25725556,1001.07412514)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0}
|
||||
\pscustom[linewidth=0.99999871,linecolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(203.14213417,1019.82024945)
|
||||
\lineto(220.77983622,1038.76475717)
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0}
|
||||
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(213.96571932,1031.4457714)
|
||||
\lineto(214.16766687,1025.79253034)
|
||||
\lineto(220.77983622,1038.76475717)
|
||||
\lineto(208.31247826,1031.24382386)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0}
|
||||
\pscustom[linewidth=1.06666532,linecolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(213.96571932,1031.4457714)
|
||||
\lineto(214.16766687,1025.79253034)
|
||||
\lineto(220.77983622,1038.76475717)
|
||||
\lineto(208.31247826,1031.24382386)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0}
|
||||
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(210.22459463,967.02424348)
|
||||
\curveto(209.17424623,967.02424348)(208.33874182,966.63274999)(207.7180814,965.849763)
|
||||
\curveto(207.10219529,965.066776)(206.79425223,963.99971751)(206.79425223,962.64858752)
|
||||
\curveto(206.79425223,961.30223184)(207.10219529,960.2375605)(207.7180814,959.45457351)
|
||||
\curveto(208.33874182,958.67158652)(209.17424623,958.28009302)(210.22459463,958.28009302)
|
||||
\curveto(211.27494304,958.28009302)(212.10567314,958.67158652)(212.71678494,959.45457351)
|
||||
\curveto(213.33267105,960.2375605)(213.6406141,961.30223184)(213.6406141,962.64858752)
|
||||
\curveto(213.6406141,963.99971751)(213.33267105,965.066776)(212.71678494,965.849763)
|
||||
\curveto(212.10567314,966.63274999)(211.27494304,967.02424348)(210.22459463,967.02424348)
|
||||
\closepath
|
||||
\moveto(212.25128962,957.50665465)
|
||||
\lineto(214.15623968,955.42266793)
|
||||
\lineto(212.40884188,955.42266793)
|
||||
\lineto(210.82615781,957.1342584)
|
||||
\curveto(210.66860555,957.12470978)(210.54686062,957.11754831)(210.46092302,957.112774)
|
||||
\curveto(210.37975974,957.10799969)(210.30098361,957.10561253)(210.22459463,957.10561253)
|
||||
\curveto(208.72068669,957.10561253)(207.51756034,957.60691518)(206.61521557,958.60952048)
|
||||
\curveto(205.71764512,959.61690008)(205.26885989,960.96325576)(205.26885989,962.64858752)
|
||||
\curveto(205.26885989,964.33869359)(205.71764512,965.68504927)(206.61521557,966.68765456)
|
||||
\curveto(207.51756034,967.69503417)(208.72068669,968.19872397)(210.22459463,968.19872397)
|
||||
\curveto(211.72372826,968.19872397)(212.92208031,967.69503417)(213.81965076,966.68765456)
|
||||
\curveto(214.71722122,965.68504927)(215.16600644,964.33869359)(215.16600644,962.64858752)
|
||||
\curveto(215.16600644,961.40726668)(214.91535512,960.3449825)(214.41405247,959.46173498)
|
||||
\curveto(213.91752414,958.57848745)(213.19660319,957.92679401)(212.25128962,957.50665465)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0}
|
||||
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(217.11392581,961.91811795)
|
||||
\lineto(220.9739562,961.91811795)
|
||||
\lineto(220.9739562,960.74363746)
|
||||
\lineto(217.11392581,960.74363746)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0}
|
||||
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(223.24414123,963.9734588)
|
||||
\lineto(232.42514115,963.9734588)
|
||||
\lineto(232.42514115,962.77033245)
|
||||
\lineto(223.24414123,962.77033245)
|
||||
\closepath
|
||||
\moveto(223.24414123,961.05158051)
|
||||
\lineto(232.42514115,961.05158051)
|
||||
\lineto(232.42514115,959.83413123)
|
||||
\lineto(223.24414123,959.83413123)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0}
|
||||
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(234.69532634,961.91811795)
|
||||
\lineto(238.55535673,961.91811795)
|
||||
\lineto(238.55535673,960.74363746)
|
||||
\lineto(234.69532634,960.74363746)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0}
|
||||
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(241.09051693,958.53074434)
|
||||
\lineto(243.45380083,958.53074434)
|
||||
\lineto(243.45380083,966.68765456)
|
||||
\lineto(240.8828344,966.17202898)
|
||||
\lineto(240.8828344,967.4897388)
|
||||
\lineto(243.4394779,968.00536438)
|
||||
\lineto(244.88609411,968.00536438)
|
||||
\lineto(244.88609411,958.53074434)
|
||||
\lineto(247.24937802,958.53074434)
|
||||
\lineto(247.24937802,957.31329506)
|
||||
\lineto(241.09051693,957.31329506)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0}
|
||||
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(250.42190683,958.53074434)
|
||||
\lineto(252.78519073,958.53074434)
|
||||
\lineto(252.78519073,966.68765456)
|
||||
\lineto(250.2142243,966.17202898)
|
||||
\lineto(250.2142243,967.4897388)
|
||||
\lineto(252.7708678,968.00536438)
|
||||
\lineto(254.21748401,968.00536438)
|
||||
\lineto(254.21748401,958.53074434)
|
||||
\lineto(256.58076792,958.53074434)
|
||||
\lineto(256.58076792,957.31329506)
|
||||
\lineto(250.42190683,957.31329506)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0}
|
||||
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(262.59639888,967.05288935)
|
||||
\curveto(261.85160638,967.05288935)(261.29062484,966.68526741)(260.91345428,965.95002353)
|
||||
\curveto(260.54105803,965.21955395)(260.3548599,964.11907528)(260.3548599,962.64858752)
|
||||
\curveto(260.3548599,961.18287406)(260.54105803,960.0823954)(260.91345428,959.34715151)
|
||||
\curveto(261.29062484,958.61668194)(261.85160638,958.25144716)(262.59639888,958.25144716)
|
||||
\curveto(263.3459657,958.25144716)(263.90694723,958.61668194)(264.27934348,959.34715151)
|
||||
\curveto(264.65651405,960.0823954)(264.84509933,961.18287406)(264.84509933,962.64858752)
|
||||
\curveto(264.84509933,964.11907528)(264.65651405,965.21955395)(264.27934348,965.95002353)
|
||||
\curveto(263.90694723,966.68526741)(263.3459657,967.05288935)(262.59639888,967.05288935)
|
||||
\closepath
|
||||
\moveto(262.59639888,968.19872397)
|
||||
\curveto(263.79475093,968.19872397)(264.70903147,967.72368003)(265.33924051,966.77359216)
|
||||
\curveto(265.97422386,965.8282786)(266.29171554,964.45327705)(266.29171554,962.64858752)
|
||||
\curveto(266.29171554,960.8486723)(265.97422386,959.47367075)(265.33924051,958.52358288)
|
||||
\curveto(264.70903147,957.57826932)(263.79475093,957.10561253)(262.59639888,957.10561253)
|
||||
\curveto(261.39804684,957.10561253)(260.48137914,957.57826932)(259.84639579,958.52358288)
|
||||
\curveto(259.21618675,959.47367075)(258.90108223,960.8486723)(258.90108223,962.64858752)
|
||||
\curveto(258.90108223,964.45327705)(259.21618675,965.8282786)(259.84639579,966.77359216)
|
||||
\curveto(260.48137914,967.72368003)(261.39804684,968.19872397)(262.59639888,968.19872397)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0}
|
||||
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(268.87700771,957.53530052)
|
||||
\lineto(268.87700771,958.85301033)
|
||||
\curveto(269.23985534,958.68113514)(269.60747728,958.54984159)(269.97987353,958.45912968)
|
||||
\curveto(270.35226978,958.36841777)(270.71750457,958.32306182)(271.07557789,958.32306182)
|
||||
\curveto(272.03044007,958.32306182)(272.75852249,958.64294065)(273.25982514,959.28269832)
|
||||
\curveto(273.76590209,959.92723029)(274.05474791,960.90357688)(274.12636257,962.21173807)
|
||||
\curveto(273.84945254,961.80114733)(273.49854068,961.48604281)(273.07362701,961.26642451)
|
||||
\curveto(272.64871334,961.0468062)(272.17844371,960.93699705)(271.66281813,960.93699705)
|
||||
\curveto(270.59337248,960.93699705)(269.74593229,961.25926304)(269.12049756,961.90379501)
|
||||
\curveto(268.49983714,962.5531013)(268.18950693,963.43873598)(268.18950693,964.56069905)
|
||||
\curveto(268.18950693,965.65879056)(268.51416008,966.53965092)(269.16346636,967.20328014)
|
||||
\curveto(269.81277265,967.86690936)(270.67692292,968.19872397)(271.75591719,968.19872397)
|
||||
\curveto(272.99246372,968.19872397)(273.93539013,967.72368003)(274.58469642,966.77359216)
|
||||
\curveto(275.23877702,965.8282786)(275.56581731,964.45327705)(275.56581731,962.64858752)
|
||||
\curveto(275.56581731,960.96325576)(275.1647752,959.61690008)(274.36269096,958.60952048)
|
||||
\curveto(273.56538104,957.60691518)(272.49116108,957.10561253)(271.14003108,957.10561253)
|
||||
\curveto(270.77718345,957.10561253)(270.40956151,957.14141987)(270.03716526,957.21303453)
|
||||
\curveto(269.66476901,957.28464919)(269.27804982,957.39207119)(268.87700771,957.53530052)
|
||||
\closepath
|
||||
\moveto(271.75591719,962.06850874)
|
||||
\curveto(272.40522348,962.06850874)(272.91846191,962.2905142)(273.29563247,962.73452512)
|
||||
\curveto(273.67757734,963.17853603)(273.86854978,963.78726068)(273.86854978,964.56069905)
|
||||
\curveto(273.86854978,965.3293631)(273.67757734,965.93570059)(273.29563247,966.37971151)
|
||||
\curveto(272.91846191,966.82849674)(272.40522348,967.05288935)(271.75591719,967.05288935)
|
||||
\curveto(271.10661091,967.05288935)(270.59098533,966.82849674)(270.20904045,966.37971151)
|
||||
\curveto(269.83186989,965.93570059)(269.64328461,965.3293631)(269.64328461,964.56069905)
|
||||
\curveto(269.64328461,963.78726068)(269.83186989,963.17853603)(270.20904045,962.73452512)
|
||||
\curveto(270.59098533,962.2905142)(271.10661091,962.06850874)(271.75591719,962.06850874)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0}
|
||||
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(282.69863635,968.00536438)
|
||||
\lineto(284.14525256,968.00536438)
|
||||
\lineto(284.14525256,958.05808756)
|
||||
\curveto(284.14525256,956.76902361)(283.89937555,955.83325867)(283.40762153,955.25079274)
|
||||
\curveto(282.92064181,954.66832681)(282.13526766,954.37709384)(281.05149908,954.37709384)
|
||||
\lineto(280.50006617,954.37709384)
|
||||
\lineto(280.50006617,955.59454312)
|
||||
\lineto(280.95123855,955.59454312)
|
||||
\curveto(281.59099622,955.59454312)(282.0421686,955.77357978)(282.3047557,956.1316531)
|
||||
\curveto(282.5673428,956.48972642)(282.69863635,957.13187124)(282.69863635,958.05808756)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0}
|
||||
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(231.54845954,1040.42175805)
|
||||
\lineto(229.58621775,1035.10078852)
|
||||
\lineto(233.5178628,1035.10078852)
|
||||
\closepath
|
||||
\moveto(230.73205238,1041.84688986)
|
||||
\lineto(232.37202818,1041.84688986)
|
||||
\lineto(236.44690255,1031.15482054)
|
||||
\lineto(234.94299461,1031.15482054)
|
||||
\lineto(233.96903518,1033.89766217)
|
||||
\lineto(229.1493683,1033.89766217)
|
||||
\lineto(228.17540887,1031.15482054)
|
||||
\lineto(226.65001653,1031.15482054)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0}
|
||||
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(238.12268588,1037.81498428)
|
||||
\lineto(247.30368579,1037.81498428)
|
||||
\lineto(247.30368579,1036.61185793)
|
||||
\lineto(238.12268588,1036.61185793)
|
||||
\closepath
|
||||
\moveto(238.12268588,1034.89310599)
|
||||
\lineto(247.30368579,1034.89310599)
|
||||
\lineto(247.30368579,1033.67565671)
|
||||
\lineto(238.12268588,1033.67565671)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0}
|
||||
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(254.80890202,1036.91980098)
|
||||
\curveto(255.5011771,1036.77179734)(256.04067424,1036.46385429)(256.42739342,1035.99597182)
|
||||
\curveto(256.81888692,1035.52808935)(257.01463366,1034.95039773)(257.01463366,1034.26289695)
|
||||
\curveto(257.01463366,1033.20777424)(256.65178603,1032.39136707)(255.92609077,1031.81367545)
|
||||
\curveto(255.20039551,1031.23598382)(254.16914435,1030.94713801)(252.83233729,1030.94713801)
|
||||
\curveto(252.38355207,1030.94713801)(251.92044391,1030.99249397)(251.44301281,1031.08320587)
|
||||
\curveto(250.97035603,1031.16914347)(250.48098916,1031.30043702)(249.9749122,1031.47708653)
|
||||
\lineto(249.9749122,1032.87357247)
|
||||
\curveto(250.37595432,1032.63963124)(250.81519093,1032.46298173)(251.29262202,1032.34362396)
|
||||
\curveto(251.77005311,1032.22426619)(252.2689686,1032.1645873)(252.78936849,1032.1645873)
|
||||
\curveto(253.69648757,1032.1645873)(254.3863755,1032.34362396)(254.85903228,1032.70169728)
|
||||
\curveto(255.33646337,1033.0597706)(255.57517892,1033.58017049)(255.57517892,1034.26289695)
|
||||
\curveto(255.57517892,1034.89310599)(255.35317346,1035.38486002)(254.90916255,1035.73815903)
|
||||
\curveto(254.46992594,1036.09623235)(253.85642699,1036.27526901)(253.06866568,1036.27526901)
|
||||
\lineto(251.82257053,1036.27526901)
|
||||
\lineto(251.82257053,1037.46407243)
|
||||
\lineto(253.12595741,1037.46407243)
|
||||
\curveto(253.83732974,1037.46407243)(254.38160119,1037.6049146)(254.75877175,1037.88659895)
|
||||
\curveto(255.13594232,1038.1730576)(255.3245276,1038.58364834)(255.3245276,1039.11837116)
|
||||
\curveto(255.3245276,1039.66741692)(255.12878085,1040.08755628)(254.73728735,1040.37878925)
|
||||
\curveto(254.35056817,1040.67479653)(253.79436094,1040.82280017)(253.06866568,1040.82280017)
|
||||
\curveto(252.67239788,1040.82280017)(252.2474842,1040.77983137)(251.79392467,1040.69389377)
|
||||
\curveto(251.34036513,1040.60795617)(250.84144964,1040.47427547)(250.29717819,1040.29285165)
|
||||
\lineto(250.29717819,1041.5819156)
|
||||
\curveto(250.84622395,1041.73469355)(251.35946237,1041.84927701)(251.83689346,1041.92566599)
|
||||
\curveto(252.31909887,1042.00205496)(252.77265841,1042.04024945)(253.19757208,1042.04024945)
|
||||
\curveto(254.29566359,1042.04024945)(255.16458818,1041.78959813)(255.80434584,1041.28829548)
|
||||
\curveto(256.44410351,1040.79176714)(256.76398234,1040.1185893)(256.76398234,1039.26876196)
|
||||
\curveto(256.76398234,1038.6767474)(256.5944943,1038.17544476)(256.25551823,1037.76485402)
|
||||
\curveto(255.91654215,1037.35903759)(255.43433675,1037.07735324)(254.80890202,1036.91980098)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0}
|
||||
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(264.14029192,1036.91980098)
|
||||
\curveto(264.832567,1036.77179734)(265.37206414,1036.46385429)(265.75878332,1035.99597182)
|
||||
\curveto(266.15027682,1035.52808935)(266.34602356,1034.95039773)(266.34602356,1034.26289695)
|
||||
\curveto(266.34602356,1033.20777424)(265.98317593,1032.39136707)(265.25748067,1031.81367545)
|
||||
\curveto(264.53178541,1031.23598382)(263.50053425,1030.94713801)(262.16372719,1030.94713801)
|
||||
\curveto(261.71494197,1030.94713801)(261.25183381,1030.99249397)(260.77440271,1031.08320587)
|
||||
\curveto(260.30174593,1031.16914347)(259.81237906,1031.30043702)(259.3063021,1031.47708653)
|
||||
\lineto(259.3063021,1032.87357247)
|
||||
\curveto(259.70734422,1032.63963124)(260.14658083,1032.46298173)(260.62401192,1032.34362396)
|
||||
\curveto(261.10144301,1032.22426619)(261.6003585,1032.1645873)(262.12075839,1032.1645873)
|
||||
\curveto(263.02787747,1032.1645873)(263.7177654,1032.34362396)(264.19042218,1032.70169728)
|
||||
\curveto(264.66785327,1033.0597706)(264.90656882,1033.58017049)(264.90656882,1034.26289695)
|
||||
\curveto(264.90656882,1034.89310599)(264.68456336,1035.38486002)(264.24055245,1035.73815903)
|
||||
\curveto(263.80131584,1036.09623235)(263.18781689,1036.27526901)(262.40005558,1036.27526901)
|
||||
\lineto(261.15396043,1036.27526901)
|
||||
\lineto(261.15396043,1037.46407243)
|
||||
\lineto(262.45734732,1037.46407243)
|
||||
\curveto(263.16871964,1037.46407243)(263.71299109,1037.6049146)(264.09016165,1037.88659895)
|
||||
\curveto(264.46733222,1038.1730576)(264.6559175,1038.58364834)(264.6559175,1039.11837116)
|
||||
\curveto(264.6559175,1039.66741692)(264.46017075,1040.08755628)(264.06867725,1040.37878925)
|
||||
\curveto(263.68195807,1040.67479653)(263.12575084,1040.82280017)(262.40005558,1040.82280017)
|
||||
\curveto(262.00378778,1040.82280017)(261.5788741,1040.77983137)(261.12531457,1040.69389377)
|
||||
\curveto(260.67175503,1040.60795617)(260.17283954,1040.47427547)(259.62856809,1040.29285165)
|
||||
\lineto(259.62856809,1041.5819156)
|
||||
\curveto(260.17761385,1041.73469355)(260.69085227,1041.84927701)(261.16828336,1041.92566599)
|
||||
\curveto(261.65048877,1042.00205496)(262.10404831,1042.04024945)(262.52896198,1042.04024945)
|
||||
\curveto(263.62705349,1042.04024945)(264.49597808,1041.78959813)(265.13573575,1041.28829548)
|
||||
\curveto(265.77549341,1040.79176714)(266.09537224,1040.1185893)(266.09537224,1039.26876196)
|
||||
\curveto(266.09537224,1038.6767474)(265.9258842,1038.17544476)(265.58690813,1037.76485402)
|
||||
\curveto(265.24793205,1037.35903759)(264.76572665,1037.07735324)(264.14029192,1036.91980098)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0}
|
||||
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(270.33496314,1032.37226983)
|
||||
\lineto(275.38379695,1032.37226983)
|
||||
\lineto(275.38379695,1031.15482054)
|
||||
\lineto(268.59472681,1031.15482054)
|
||||
\lineto(268.59472681,1032.37226983)
|
||||
\curveto(269.14377257,1032.94041283)(269.89095223,1033.70191542)(270.83626579,1034.6567776)
|
||||
\curveto(271.78635366,1035.6164141)(272.38314253,1036.23468736)(272.62663239,1036.5115974)
|
||||
\curveto(273.08974055,1037.03199729)(273.41200653,1037.47123389)(273.59343035,1037.82930721)
|
||||
\curveto(273.77962848,1038.19215484)(273.87272754,1038.54784101)(273.87272754,1038.89636571)
|
||||
\curveto(273.87272754,1039.46450871)(273.67220648,1039.92761687)(273.27116436,1040.28569019)
|
||||
\curveto(272.87489656,1040.64376351)(272.35688382,1040.82280017)(271.71712616,1040.82280017)
|
||||
\curveto(271.26356662,1040.82280017)(270.78374837,1040.74402404)(270.27767141,1040.58647177)
|
||||
\curveto(269.77636876,1040.42891951)(269.23925878,1040.19020397)(268.66634147,1039.87032514)
|
||||
\lineto(268.66634147,1041.33126428)
|
||||
\curveto(269.24880741,1041.56520551)(269.79307885,1041.74185502)(270.29915581,1041.86121279)
|
||||
\curveto(270.80523277,1041.98057057)(271.26834093,1042.04024945)(271.68848029,1042.04024945)
|
||||
\curveto(272.79612043,1042.04024945)(273.67936795,1041.76333942)(274.33822285,1041.20951935)
|
||||
\curveto(274.99707776,1040.65569928)(275.32650522,1039.91568109)(275.32650522,1038.98946477)
|
||||
\curveto(275.32650522,1038.55022816)(275.24295478,1038.13247596)(275.07585389,1037.73620815)
|
||||
\curveto(274.91352732,1037.34471466)(274.61513289,1036.8816065)(274.18067059,1036.34688367)
|
||||
\curveto(274.06131282,1036.20842865)(273.6817551,1035.80738654)(273.04199744,1035.14375732)
|
||||
\curveto(272.40223977,1034.48490241)(271.49989501,1033.56107325)(270.33496314,1032.37226983)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0}
|
||||
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(278.05502311,1041.84688986)
|
||||
\lineto(284.93003084,1041.84688986)
|
||||
\lineto(284.93003084,1041.23100375)
|
||||
\lineto(281.04851606,1031.15482054)
|
||||
\lineto(279.53744665,1031.15482054)
|
||||
\lineto(283.18979451,1040.62944057)
|
||||
\lineto(278.05502311,1040.62944057)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0}
|
||||
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(292.28485894,1041.84688986)
|
||||
\lineto(293.73147515,1041.84688986)
|
||||
\lineto(293.73147515,1031.89961304)
|
||||
\curveto(293.73147515,1030.61054909)(293.48559814,1029.67478415)(292.99384411,1029.09231822)
|
||||
\curveto(292.5068644,1028.50985229)(291.72149025,1028.21861932)(290.63772167,1028.21861932)
|
||||
\lineto(290.08628876,1028.21861932)
|
||||
\lineto(290.08628876,1029.43606861)
|
||||
\lineto(290.53746114,1029.43606861)
|
||||
\curveto(291.17721881,1029.43606861)(291.62839119,1029.61510527)(291.89097829,1029.97317858)
|
||||
\curveto(292.15356539,1030.3312519)(292.28485894,1030.97339672)(292.28485894,1031.89961304)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0}
|
||||
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(97.19806078,967.02424332)
|
||||
\curveto(96.14771237,967.02424332)(95.31220796,966.63274983)(94.69154754,965.84976284)
|
||||
\curveto(94.07566143,965.06677584)(93.76771838,963.99971735)(93.76771838,962.64858736)
|
||||
\curveto(93.76771838,961.30223168)(94.07566143,960.23756034)(94.69154754,959.45457335)
|
||||
\curveto(95.31220796,958.67158636)(96.14771237,958.28009286)(97.19806078,958.28009286)
|
||||
\curveto(98.24840918,958.28009286)(99.07913928,958.67158636)(99.69025108,959.45457335)
|
||||
\curveto(100.30613719,960.23756034)(100.61408025,961.30223168)(100.61408025,962.64858736)
|
||||
\curveto(100.61408025,963.99971735)(100.30613719,965.06677584)(99.69025108,965.84976284)
|
||||
\curveto(99.07913928,966.63274983)(98.24840918,967.02424332)(97.19806078,967.02424332)
|
||||
\closepath
|
||||
\moveto(99.22475577,957.50665449)
|
||||
\lineto(101.12970583,955.42266777)
|
||||
\lineto(99.38230803,955.42266777)
|
||||
\lineto(97.79962395,957.13425824)
|
||||
\curveto(97.64207169,957.12470962)(97.52032677,957.11754815)(97.43438917,957.11277384)
|
||||
\curveto(97.35322588,957.10799953)(97.27444975,957.10561237)(97.19806078,957.10561237)
|
||||
\curveto(95.69415284,957.10561237)(94.49102648,957.60691502)(93.58868172,958.60952032)
|
||||
\curveto(92.69111126,959.61689992)(92.24232604,960.9632556)(92.24232604,962.64858736)
|
||||
\curveto(92.24232604,964.33869343)(92.69111126,965.68504911)(93.58868172,966.6876544)
|
||||
\curveto(94.49102648,967.69503401)(95.69415284,968.19872381)(97.19806078,968.19872381)
|
||||
\curveto(98.69719441,968.19872381)(99.89554645,967.69503401)(100.79311691,966.6876544)
|
||||
\curveto(101.69068736,965.68504911)(102.13947259,964.33869343)(102.13947259,962.64858736)
|
||||
\curveto(102.13947259,961.40726652)(101.88882126,960.34498234)(101.38751862,959.46173482)
|
||||
\curveto(100.89099028,958.57848729)(100.17006933,957.92679385)(99.22475577,957.50665449)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0}
|
||||
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(109.70914221,966.50861774)
|
||||
\lineto(109.70914221,962.51968096)
|
||||
\lineto(113.69807899,962.51968096)
|
||||
\lineto(113.69807899,961.30223168)
|
||||
\lineto(109.70914221,961.30223168)
|
||||
\lineto(109.70914221,957.3132949)
|
||||
\lineto(108.50601586,957.3132949)
|
||||
\lineto(108.50601586,961.30223168)
|
||||
\lineto(104.51707908,961.30223168)
|
||||
\lineto(104.51707908,962.51968096)
|
||||
\lineto(108.50601586,962.51968096)
|
||||
\lineto(108.50601586,966.50861774)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0}
|
||||
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(116.80615666,963.97345864)
|
||||
\lineto(125.98715657,963.97345864)
|
||||
\lineto(125.98715657,962.77033229)
|
||||
\lineto(116.80615666,962.77033229)
|
||||
\closepath
|
||||
\moveto(116.80615666,961.05158035)
|
||||
\lineto(125.98715657,961.05158035)
|
||||
\lineto(125.98715657,959.83413107)
|
||||
\lineto(116.80615666,959.83413107)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0}
|
||||
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(133.08417011,966.74494613)
|
||||
\lineto(129.43182225,961.03725742)
|
||||
\lineto(133.08417011,961.03725742)
|
||||
\closepath
|
||||
\moveto(132.70461239,968.00536422)
|
||||
\lineto(134.52362486,968.00536422)
|
||||
\lineto(134.52362486,961.03725742)
|
||||
\lineto(136.0490172,961.03725742)
|
||||
\lineto(136.0490172,959.83413107)
|
||||
\lineto(134.52362486,959.83413107)
|
||||
\lineto(134.52362486,957.3132949)
|
||||
\lineto(133.08417011,957.3132949)
|
||||
\lineto(133.08417011,959.83413107)
|
||||
\lineto(128.25734177,959.83413107)
|
||||
\lineto(128.25734177,961.23061701)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0}
|
||||
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(142.41556001,966.74494613)
|
||||
\lineto(138.76321215,961.03725742)
|
||||
\lineto(142.41556001,961.03725742)
|
||||
\closepath
|
||||
\moveto(142.03600229,968.00536422)
|
||||
\lineto(143.85501476,968.00536422)
|
||||
\lineto(143.85501476,961.03725742)
|
||||
\lineto(145.3804071,961.03725742)
|
||||
\lineto(145.3804071,959.83413107)
|
||||
\lineto(143.85501476,959.83413107)
|
||||
\lineto(143.85501476,957.3132949)
|
||||
\lineto(142.41556001,957.3132949)
|
||||
\lineto(142.41556001,959.83413107)
|
||||
\lineto(137.58873167,959.83413107)
|
||||
\lineto(137.58873167,961.23061701)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0}
|
||||
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(152.1551535,963.07827534)
|
||||
\curveto(152.84742858,962.9302717)(153.38692572,962.62232865)(153.7736449,962.15444618)
|
||||
\curveto(154.1651384,961.68656371)(154.36088514,961.10887209)(154.36088514,960.42137131)
|
||||
\curveto(154.36088514,959.3662486)(153.99803751,958.54984143)(153.27234225,957.97214981)
|
||||
\curveto(152.54664699,957.39445818)(151.51539583,957.10561237)(150.17858877,957.10561237)
|
||||
\curveto(149.72980355,957.10561237)(149.26669539,957.15096833)(148.78926429,957.24168023)
|
||||
\curveto(148.31660751,957.32761783)(147.82724064,957.45891138)(147.32116368,957.63556089)
|
||||
\lineto(147.32116368,959.03204683)
|
||||
\curveto(147.7222058,958.7981056)(148.16144241,958.62145609)(148.6388735,958.50209832)
|
||||
\curveto(149.11630459,958.38274055)(149.61522008,958.32306166)(150.13561997,958.32306166)
|
||||
\curveto(151.04273905,958.32306166)(151.73262698,958.50209832)(152.20528376,958.86017164)
|
||||
\curveto(152.68271485,959.21824496)(152.9214304,959.73864485)(152.9214304,960.42137131)
|
||||
\curveto(152.9214304,961.05158035)(152.69942494,961.54333438)(152.25541403,961.89663339)
|
||||
\curveto(151.81617742,962.25470671)(151.20267847,962.43374337)(150.41491716,962.43374337)
|
||||
\lineto(149.16882201,962.43374337)
|
||||
\lineto(149.16882201,963.62254679)
|
||||
\lineto(150.4722089,963.62254679)
|
||||
\curveto(151.18358122,963.62254679)(151.72785267,963.76338896)(152.10502323,964.04507331)
|
||||
\curveto(152.4821938,964.33153196)(152.67077908,964.7421227)(152.67077908,965.27684552)
|
||||
\curveto(152.67077908,965.82589128)(152.47503233,966.24603064)(152.08353883,966.53726361)
|
||||
\curveto(151.69681965,966.83327089)(151.14061242,966.98127453)(150.41491716,966.98127453)
|
||||
\curveto(150.01864936,966.98127453)(149.59373568,966.93830573)(149.14017615,966.85236813)
|
||||
\curveto(148.68661661,966.76643053)(148.18770112,966.63274983)(147.64342967,966.45132601)
|
||||
\lineto(147.64342967,967.74038996)
|
||||
\curveto(148.19247543,967.89316791)(148.70571385,968.00775137)(149.18314494,968.08414035)
|
||||
\curveto(149.66535035,968.16052932)(150.11890989,968.19872381)(150.54382356,968.19872381)
|
||||
\curveto(151.64191507,968.19872381)(152.51083966,967.94807249)(153.15059732,967.44676984)
|
||||
\curveto(153.79035499,966.9502415)(154.11023382,966.27706366)(154.11023382,965.42723632)
|
||||
\curveto(154.11023382,964.83522176)(153.94074578,964.33391912)(153.60176971,963.92332838)
|
||||
\curveto(153.26279363,963.51751195)(152.78058823,963.2358276)(152.1551535,963.07827534)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0}
|
||||
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(160.37651611,963.2358276)
|
||||
\curveto(159.72720982,963.2358276)(159.21158424,963.01382215)(158.82963937,962.56981123)
|
||||
\curveto(158.4524688,962.12580031)(158.26388352,961.51707567)(158.26388352,960.7436373)
|
||||
\curveto(158.26388352,959.97497324)(158.4524688,959.3662486)(158.82963937,958.91746337)
|
||||
\curveto(159.21158424,958.47345245)(159.72720982,958.251447)(160.37651611,958.251447)
|
||||
\curveto(161.02582239,958.251447)(161.53906082,958.47345245)(161.91623138,958.91746337)
|
||||
\curveto(162.29817625,959.3662486)(162.48914869,959.97497324)(162.48914869,960.7436373)
|
||||
\curveto(162.48914869,961.51707567)(162.29817625,962.12580031)(161.91623138,962.56981123)
|
||||
\curveto(161.53906082,963.01382215)(161.02582239,963.2358276)(160.37651611,963.2358276)
|
||||
\closepath
|
||||
\moveto(163.24826413,967.76903583)
|
||||
\lineto(163.24826413,966.45132601)
|
||||
\curveto(162.8854165,966.62320121)(162.51779456,966.75449476)(162.1453983,966.84520666)
|
||||
\curveto(161.77777636,966.93591857)(161.41254158,966.98127453)(161.04969395,966.98127453)
|
||||
\curveto(160.09483176,966.98127453)(159.36436219,966.65900854)(158.85828523,966.01447656)
|
||||
\curveto(158.35698258,965.36994459)(158.07052393,964.39598516)(157.99890927,963.09259828)
|
||||
\curveto(158.28059361,963.50796333)(158.63389262,963.825455)(159.05880629,964.04507331)
|
||||
\curveto(159.48371996,964.26946592)(159.95160243,964.38166223)(160.4624537,964.38166223)
|
||||
\curveto(161.53667366,964.38166223)(162.38411385,964.05462193)(163.00477427,963.40054133)
|
||||
\curveto(163.630209,962.75123504)(163.94292637,961.86560037)(163.94292637,960.7436373)
|
||||
\curveto(163.94292637,959.64554579)(163.61827323,958.76468542)(162.96896694,958.1010562)
|
||||
\curveto(162.31966065,957.43742698)(161.45551038,957.10561237)(160.37651611,957.10561237)
|
||||
\curveto(159.13996958,957.10561237)(158.19465601,957.57826916)(157.54057542,958.52358272)
|
||||
\curveto(156.88649482,959.47367059)(156.55945452,960.84867214)(156.55945452,962.64858736)
|
||||
\curveto(156.55945452,964.33869343)(156.96049664,965.68504911)(157.76258087,966.6876544)
|
||||
\curveto(158.56466511,967.69503401)(159.64127222,968.19872381)(160.99240222,968.19872381)
|
||||
\curveto(161.35524985,968.19872381)(161.72048463,968.16291648)(162.08810657,968.09130182)
|
||||
\curveto(162.46050283,968.01968715)(162.84722201,967.91226516)(163.24826413,967.76903583)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0}
|
||||
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(170.96832341,968.00536422)
|
||||
\lineto(172.41493962,968.00536422)
|
||||
\lineto(172.41493962,958.0580874)
|
||||
\curveto(172.41493962,956.76902345)(172.16906261,955.83325851)(171.67730858,955.25079258)
|
||||
\curveto(171.19032887,954.66832665)(170.40495472,954.37709368)(169.32118614,954.37709368)
|
||||
\lineto(168.76975323,954.37709368)
|
||||
\lineto(168.76975323,955.59454297)
|
||||
\lineto(169.22092561,955.59454297)
|
||||
\curveto(169.86068328,955.59454297)(170.31185566,955.77357962)(170.57444276,956.13165294)
|
||||
\curveto(170.83702986,956.48972626)(170.96832341,957.13187108)(170.96832341,958.0580874)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
\end{pspicture}
|
507
Annexe-Exercices/Images/cycle1.tex.bak
Normal file
507
Annexe-Exercices/Images/cycle1.tex.bak
Normal file
@ -0,0 +1,507 @@
|
||||
%LaTeX with PSTricks extensions
|
||||
%%Creator: Inkscape 1.0.2 (e86c870879, 2021-01-15)
|
||||
%%Please note this file requires PSTricks extensions
|
||||
\psset{xunit=.5pt,yunit=.5pt,runit=.5pt}
|
||||
\begin{pspicture}(793.7007874,1122.51968504)
|
||||
{
|
||||
\newrgbcolor{curcolor}{1 0 0}
|
||||
\pscustom[linewidth=3.77952756,linecolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(40.19461684,1021.24087837)
|
||||
\lineto(129.52725508,1021.24087837)
|
||||
\lineto(129.52725508,972.89477371)
|
||||
\lineto(40.19461684,972.89477371)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 1}
|
||||
\pscustom[linewidth=3.77952756,linecolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(241.39220711,1021.24087837)
|
||||
\lineto(330.72484535,1021.24087837)
|
||||
\lineto(330.72484535,972.89477371)
|
||||
\lineto(241.39220711,972.89477371)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0}
|
||||
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(59.91754859,992.946404)
|
||||
\lineto(62.2808325,992.946404)
|
||||
\lineto(62.2808325,1001.10331422)
|
||||
\lineto(59.70986606,1000.58768864)
|
||||
\lineto(59.70986606,1001.90539845)
|
||||
\lineto(62.26650957,1002.42102403)
|
||||
\lineto(63.71312578,1002.42102403)
|
||||
\lineto(63.71312578,992.946404)
|
||||
\lineto(66.07640968,992.946404)
|
||||
\lineto(66.07640968,991.72895471)
|
||||
\lineto(59.91754859,991.72895471)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0}
|
||||
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(72.27107821,997.65148742)
|
||||
\curveto(71.62177192,997.65148742)(71.10614634,997.42948196)(70.72420147,996.98547104)
|
||||
\curveto(70.3470309,996.54146013)(70.15844562,995.93273548)(70.15844562,995.15929711)
|
||||
\curveto(70.15844562,994.39063305)(70.3470309,993.78190841)(70.72420147,993.33312318)
|
||||
\curveto(71.10614634,992.88911227)(71.62177192,992.66710681)(72.27107821,992.66710681)
|
||||
\curveto(72.92038449,992.66710681)(73.43362292,992.88911227)(73.81079348,993.33312318)
|
||||
\curveto(74.19273836,993.78190841)(74.38371079,994.39063305)(74.38371079,995.15929711)
|
||||
\curveto(74.38371079,995.93273548)(74.19273836,996.54146013)(73.81079348,996.98547104)
|
||||
\curveto(73.43362292,997.42948196)(72.92038449,997.65148742)(72.27107821,997.65148742)
|
||||
\closepath
|
||||
\moveto(75.14282623,1002.18469564)
|
||||
\lineto(75.14282623,1000.86698583)
|
||||
\curveto(74.7799786,1001.03886102)(74.41235666,1001.17015457)(74.03996041,1001.26086648)
|
||||
\curveto(73.67233846,1001.35157838)(73.30710368,1001.39693434)(72.94425605,1001.39693434)
|
||||
\curveto(71.98939386,1001.39693434)(71.25892429,1001.07466835)(70.75284733,1000.43013638)
|
||||
\curveto(70.25154469,999.7856044)(69.96508603,998.81164497)(69.89347137,997.50825809)
|
||||
\curveto(70.17515571,997.92362314)(70.52845472,998.24111482)(70.95336839,998.46073312)
|
||||
\curveto(71.37828206,998.68512573)(71.84616453,998.79732204)(72.3570158,998.79732204)
|
||||
\curveto(73.43123576,998.79732204)(74.27867595,998.47028174)(74.89933637,997.81620114)
|
||||
\curveto(75.5247711,997.16689486)(75.83748847,996.28126018)(75.83748847,995.15929711)
|
||||
\curveto(75.83748847,994.0612056)(75.51283533,993.18034523)(74.86352904,992.51671602)
|
||||
\curveto(74.21422275,991.8530868)(73.35007248,991.52127219)(72.27107821,991.52127219)
|
||||
\curveto(71.03453168,991.52127219)(70.08921811,991.99392897)(69.43513752,992.93924253)
|
||||
\curveto(68.78105692,993.88933041)(68.45401662,995.26433195)(68.45401662,997.06424717)
|
||||
\curveto(68.45401662,998.75435324)(68.85505874,1000.10070892)(69.65714297,1001.10331422)
|
||||
\curveto(70.45922721,1002.11069382)(71.53583432,1002.61438363)(72.88696432,1002.61438363)
|
||||
\curveto(73.24981195,1002.61438363)(73.61504673,1002.57857629)(73.98266867,1002.50696163)
|
||||
\curveto(74.35506493,1002.43534697)(74.74178411,1002.32792497)(75.14282623,1002.18469564)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0}
|
||||
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(81.42343235,1001.468549)
|
||||
\curveto(80.67863984,1001.468549)(80.11765831,1001.10092706)(79.74048775,1000.36568318)
|
||||
\curveto(79.36809149,999.63521361)(79.18189337,998.53473494)(79.18189337,997.06424717)
|
||||
\curveto(79.18189337,995.59853372)(79.36809149,994.49805505)(79.74048775,993.76281117)
|
||||
\curveto(80.11765831,993.0323416)(80.67863984,992.66710681)(81.42343235,992.66710681)
|
||||
\curveto(82.17299916,992.66710681)(82.7339807,993.0323416)(83.10637695,993.76281117)
|
||||
\curveto(83.48354751,994.49805505)(83.6721328,995.59853372)(83.6721328,997.06424717)
|
||||
\curveto(83.6721328,998.53473494)(83.48354751,999.63521361)(83.10637695,1000.36568318)
|
||||
\curveto(82.7339807,1001.10092706)(82.17299916,1001.468549)(81.42343235,1001.468549)
|
||||
\closepath
|
||||
\moveto(81.42343235,1002.61438363)
|
||||
\curveto(82.62178439,1002.61438363)(83.53606493,1002.13933969)(84.16627398,1001.18925181)
|
||||
\curveto(84.80125733,1000.24393825)(85.11874901,998.8689367)(85.11874901,997.06424717)
|
||||
\curveto(85.11874901,995.26433195)(84.80125733,993.88933041)(84.16627398,992.93924253)
|
||||
\curveto(83.53606493,991.99392897)(82.62178439,991.52127219)(81.42343235,991.52127219)
|
||||
\curveto(80.22508031,991.52127219)(79.30841261,991.99392897)(78.67342925,992.93924253)
|
||||
\curveto(78.04322021,993.88933041)(77.72811569,995.26433195)(77.72811569,997.06424717)
|
||||
\curveto(77.72811569,998.8689367)(78.04322021,1000.24393825)(78.67342925,1001.18925181)
|
||||
\curveto(79.30841261,1002.13933969)(80.22508031,1002.61438363)(81.42343235,1002.61438363)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0}
|
||||
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(90.75482405,1001.468549)
|
||||
\curveto(90.01003155,1001.468549)(89.44905001,1001.10092706)(89.07187945,1000.36568318)
|
||||
\curveto(88.6994832,999.63521361)(88.51328507,998.53473494)(88.51328507,997.06424717)
|
||||
\curveto(88.51328507,995.59853372)(88.6994832,994.49805505)(89.07187945,993.76281117)
|
||||
\curveto(89.44905001,993.0323416)(90.01003155,992.66710681)(90.75482405,992.66710681)
|
||||
\curveto(91.50439087,992.66710681)(92.0653724,993.0323416)(92.43776865,993.76281117)
|
||||
\curveto(92.81493922,994.49805505)(93.0035245,995.59853372)(93.0035245,997.06424717)
|
||||
\curveto(93.0035245,998.53473494)(92.81493922,999.63521361)(92.43776865,1000.36568318)
|
||||
\curveto(92.0653724,1001.10092706)(91.50439087,1001.468549)(90.75482405,1001.468549)
|
||||
\closepath
|
||||
\moveto(90.75482405,1002.61438363)
|
||||
\curveto(91.95317609,1002.61438363)(92.86745664,1002.13933969)(93.49766568,1001.18925181)
|
||||
\curveto(94.13264903,1000.24393825)(94.45014071,998.8689367)(94.45014071,997.06424717)
|
||||
\curveto(94.45014071,995.26433195)(94.13264903,993.88933041)(93.49766568,992.93924253)
|
||||
\curveto(92.86745664,991.99392897)(91.95317609,991.52127219)(90.75482405,991.52127219)
|
||||
\curveto(89.55647201,991.52127219)(88.63980431,991.99392897)(88.00482096,992.93924253)
|
||||
\curveto(87.37461192,993.88933041)(87.05950739,995.26433195)(87.05950739,997.06424717)
|
||||
\curveto(87.05950739,998.8689367)(87.37461192,1000.24393825)(88.00482096,1001.18925181)
|
||||
\curveto(88.63980431,1002.13933969)(89.55647201,1002.61438363)(90.75482405,1002.61438363)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0}
|
||||
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(101.52566802,1002.42102403)
|
||||
\lineto(102.97228423,1002.42102403)
|
||||
\lineto(102.97228423,997.90213874)
|
||||
\lineto(107.77046671,1002.42102403)
|
||||
\lineto(109.63244797,1002.42102403)
|
||||
\lineto(104.32580138,997.43664343)
|
||||
\lineto(110.01200569,991.72895471)
|
||||
\lineto(108.10705563,991.72895471)
|
||||
\lineto(102.97228423,996.87804905)
|
||||
\lineto(102.97228423,991.72895471)
|
||||
\lineto(101.52566802,991.72895471)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0}
|
||||
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(269.95238825,1001.16060576)
|
||||
\lineto(266.30004039,995.45291705)
|
||||
\lineto(269.95238825,995.45291705)
|
||||
\closepath
|
||||
\moveto(269.57283053,1002.42102384)
|
||||
\lineto(271.39184299,1002.42102384)
|
||||
\lineto(271.39184299,995.45291705)
|
||||
\lineto(272.91723533,995.45291705)
|
||||
\lineto(272.91723533,994.24979069)
|
||||
\lineto(271.39184299,994.24979069)
|
||||
\lineto(271.39184299,991.72895452)
|
||||
\lineto(269.95238825,991.72895452)
|
||||
\lineto(269.95238825,994.24979069)
|
||||
\lineto(265.1255599,994.24979069)
|
||||
\lineto(265.1255599,995.64627664)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0}
|
||||
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(278.40291868,1001.46854881)
|
||||
\curveto(277.65812618,1001.46854881)(277.09714464,1001.10092687)(276.71997408,1000.36568299)
|
||||
\curveto(276.34757783,999.63521342)(276.1613797,998.53473475)(276.1613797,997.06424698)
|
||||
\curveto(276.1613797,995.59853353)(276.34757783,994.49805486)(276.71997408,993.76281098)
|
||||
\curveto(277.09714464,993.03234141)(277.65812618,992.66710662)(278.40291868,992.66710662)
|
||||
\curveto(279.1524855,992.66710662)(279.71346703,993.03234141)(280.08586328,993.76281098)
|
||||
\curveto(280.46303385,994.49805486)(280.65161913,995.59853353)(280.65161913,997.06424698)
|
||||
\curveto(280.65161913,998.53473475)(280.46303385,999.63521342)(280.08586328,1000.36568299)
|
||||
\curveto(279.71346703,1001.10092687)(279.1524855,1001.46854881)(278.40291868,1001.46854881)
|
||||
\closepath
|
||||
\moveto(278.40291868,1002.61438344)
|
||||
\curveto(279.60127072,1002.61438344)(280.51555127,1002.1393395)(281.14576031,1001.18925162)
|
||||
\curveto(281.78074366,1000.24393806)(282.09823534,998.86893651)(282.09823534,997.06424698)
|
||||
\curveto(282.09823534,995.26433176)(281.78074366,993.88933022)(281.14576031,992.93924234)
|
||||
\curveto(280.51555127,991.99392878)(279.60127072,991.521272)(278.40291868,991.521272)
|
||||
\curveto(277.20456664,991.521272)(276.28789894,991.99392878)(275.65291559,992.93924234)
|
||||
\curveto(275.02270655,993.88933022)(274.70760202,995.26433176)(274.70760202,997.06424698)
|
||||
\curveto(274.70760202,998.86893651)(275.02270655,1000.24393806)(275.65291559,1001.18925162)
|
||||
\curveto(276.28789894,1002.1393395)(277.20456664,1002.61438344)(278.40291868,1002.61438344)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0}
|
||||
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(287.73430948,1001.46854881)
|
||||
\curveto(286.98951698,1001.46854881)(286.42853544,1001.10092687)(286.05136488,1000.36568299)
|
||||
\curveto(285.67896863,999.63521342)(285.4927705,998.53473475)(285.4927705,997.06424698)
|
||||
\curveto(285.4927705,995.59853353)(285.67896863,994.49805486)(286.05136488,993.76281098)
|
||||
\curveto(286.42853544,993.03234141)(286.98951698,992.66710662)(287.73430948,992.66710662)
|
||||
\curveto(288.4838763,992.66710662)(289.04485783,993.03234141)(289.41725408,993.76281098)
|
||||
\curveto(289.79442465,994.49805486)(289.98300993,995.59853353)(289.98300993,997.06424698)
|
||||
\curveto(289.98300993,998.53473475)(289.79442465,999.63521342)(289.41725408,1000.36568299)
|
||||
\curveto(289.04485783,1001.10092687)(288.4838763,1001.46854881)(287.73430948,1001.46854881)
|
||||
\closepath
|
||||
\moveto(287.73430948,1002.61438344)
|
||||
\curveto(288.93266153,1002.61438344)(289.84694207,1002.1393395)(290.47715111,1001.18925162)
|
||||
\curveto(291.11213446,1000.24393806)(291.42962614,998.86893651)(291.42962614,997.06424698)
|
||||
\curveto(291.42962614,995.26433176)(291.11213446,993.88933022)(290.47715111,992.93924234)
|
||||
\curveto(289.84694207,991.99392878)(288.93266153,991.521272)(287.73430948,991.521272)
|
||||
\curveto(286.53595744,991.521272)(285.61928974,991.99392878)(284.98430639,992.93924234)
|
||||
\curveto(284.35409735,993.88933022)(284.03899283,995.26433176)(284.03899283,997.06424698)
|
||||
\curveto(284.03899283,998.86893651)(284.35409735,1000.24393806)(284.98430639,1001.18925162)
|
||||
\curveto(285.61928974,1002.1393395)(286.53595744,1002.61438344)(287.73430948,1002.61438344)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0}
|
||||
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(298.50515525,1002.42102384)
|
||||
\lineto(299.95177146,1002.42102384)
|
||||
\lineto(299.95177146,997.90213855)
|
||||
\lineto(304.74995394,1002.42102384)
|
||||
\lineto(306.6119352,1002.42102384)
|
||||
\lineto(301.30528861,997.43664324)
|
||||
\lineto(306.99149292,991.72895452)
|
||||
\lineto(305.08654286,991.72895452)
|
||||
\lineto(299.95177146,996.87804886)
|
||||
\lineto(299.95177146,991.72895452)
|
||||
\lineto(298.50515525,991.72895452)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0}
|
||||
\pscustom[linewidth=3.77952756,linecolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(214.8876076,997.06782784)
|
||||
\curveto(214.8876076,1008.97026906)(207.71770254,1019.7008024)(196.72147785,1024.25541166)
|
||||
\curveto(185.72527558,1028.81001162)(173.0684439,1026.29166336)(164.65218326,1017.87540271)
|
||||
\curveto(146.11463014,999.3378496)(159.2405209,967.63997836)(185.45975813,967.63997836)
|
||||
\curveto(197.36219935,967.63997836)(208.09273268,974.80988343)(212.64734194,985.80610812)
|
||||
\curveto(217.20194191,996.80231039)(214.68359365,1009.45914206)(206.267333,1017.87540271)
|
||||
\curveto(197.85107235,1026.29166336)(185.19424067,1028.81001162)(174.19803841,1024.25541166)
|
||||
\curveto(163.20181371,1019.7008024)(156.03190865,1008.97026906)(156.03190865,997.06782784)
|
||||
\curveto(156.03190865,970.84859062)(187.72977988,957.72269985)(206.267333,976.26025297)
|
||||
\curveto(214.68359365,984.67651362)(217.20194191,997.33334529)(212.64734194,1008.32954756)
|
||||
\curveto(208.09273268,1019.32577226)(197.36219935,1026.49567732)(185.45975813,1026.49567732)
|
||||
\curveto(159.2405209,1026.49567732)(146.11463014,994.79780609)(164.65218326,976.26025297)
|
||||
\curveto(183.18973637,957.72269985)(214.8876076,970.84859062)(214.8876076,997.06782784)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0}
|
||||
\pscustom[linewidth=0.99999871,linecolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(129.83037732,997.06782614)
|
||||
\lineto(155.71440756,997.06782614)
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0}
|
||||
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(145.71442047,997.06782614)
|
||||
\lineto(141.71442564,993.06783131)
|
||||
\lineto(155.71440756,997.06782614)
|
||||
\lineto(141.71442564,1001.06782098)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0}
|
||||
\pscustom[linewidth=1.06666532,linecolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(145.71442047,997.06782614)
|
||||
\lineto(141.71442564,993.06783131)
|
||||
\lineto(155.71440756,997.06782614)
|
||||
\lineto(141.71442564,1001.06782098)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0}
|
||||
\pscustom[linewidth=1.00157475,linecolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(215.39527181,997.06782614)
|
||||
\lineto(241.27930205,997.06782614)
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0}
|
||||
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(231.26355456,997.06782614)
|
||||
\lineto(227.25725556,993.06152715)
|
||||
\lineto(241.27930205,997.06782614)
|
||||
\lineto(227.25725556,1001.07412514)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0}
|
||||
\pscustom[linewidth=1.06834643,linecolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(231.26355456,997.06782614)
|
||||
\lineto(227.25725556,993.06152715)
|
||||
\lineto(241.27930205,997.06782614)
|
||||
\lineto(227.25725556,1001.07412514)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0}
|
||||
\pscustom[linewidth=0.99999871,linecolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(203.14213417,1019.82024945)
|
||||
\lineto(220.77983622,1038.76475717)
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0}
|
||||
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(213.96571932,1031.4457714)
|
||||
\lineto(214.16766687,1025.79253034)
|
||||
\lineto(220.77983622,1038.76475717)
|
||||
\lineto(208.31247826,1031.24382386)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0}
|
||||
\pscustom[linewidth=1.06666532,linecolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(213.96571932,1031.4457714)
|
||||
\lineto(214.16766687,1025.79253034)
|
||||
\lineto(220.77983622,1038.76475717)
|
||||
\lineto(208.31247826,1031.24382386)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0}
|
||||
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(121.77093724,964.6846666)
|
||||
\curveto(120.72058883,964.6846666)(119.88508442,964.29317311)(119.264424,963.51018611)
|
||||
\curveto(118.64853789,962.72719912)(118.34059483,961.66014063)(118.34059483,960.30901064)
|
||||
\curveto(118.34059483,958.96265496)(118.64853789,957.89798362)(119.264424,957.11499663)
|
||||
\curveto(119.88508442,956.33200964)(120.72058883,955.94051614)(121.77093724,955.94051614)
|
||||
\curveto(122.82128564,955.94051614)(123.65201574,956.33200964)(124.26312754,957.11499663)
|
||||
\curveto(124.87901365,957.89798362)(125.1869567,958.96265496)(125.1869567,960.30901064)
|
||||
\curveto(125.1869567,961.66014063)(124.87901365,962.72719912)(124.26312754,963.51018611)
|
||||
\curveto(123.65201574,964.29317311)(122.82128564,964.6846666)(121.77093724,964.6846666)
|
||||
\closepath
|
||||
\moveto(123.79763222,955.16707777)
|
||||
\lineto(125.70258228,953.08309105)
|
||||
\lineto(123.95518448,953.08309105)
|
||||
\lineto(122.37250041,954.79468152)
|
||||
\curveto(122.21494815,954.7851329)(122.09320322,954.77797143)(122.00726563,954.77319712)
|
||||
\curveto(121.92610234,954.76842281)(121.84732621,954.76603565)(121.77093724,954.76603565)
|
||||
\curveto(120.26702929,954.76603565)(119.06390294,955.2673383)(118.16155817,956.26994359)
|
||||
\curveto(117.26398772,957.2773232)(116.81520249,958.62367888)(116.81520249,960.30901064)
|
||||
\curveto(116.81520249,961.99911671)(117.26398772,963.34547239)(118.16155817,964.34807768)
|
||||
\curveto(119.06390294,965.35545729)(120.26702929,965.85914709)(121.77093724,965.85914709)
|
||||
\curveto(123.27007087,965.85914709)(124.46842291,965.35545729)(125.36599336,964.34807768)
|
||||
\curveto(126.26356382,963.34547239)(126.71234904,961.99911671)(126.71234904,960.30901064)
|
||||
\curveto(126.71234904,959.0676898)(126.46169772,958.00540562)(125.96039507,957.12215809)
|
||||
\curveto(125.46386674,956.23891057)(124.74294579,955.58721713)(123.79763222,955.16707777)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0}
|
||||
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(129.35492979,956.19116746)
|
||||
\lineto(131.7182137,956.19116746)
|
||||
\lineto(131.7182137,964.34807768)
|
||||
\lineto(129.14724726,963.8324521)
|
||||
\lineto(129.14724726,965.15016192)
|
||||
\lineto(131.70389077,965.6657875)
|
||||
\lineto(133.15050698,965.6657875)
|
||||
\lineto(133.15050698,956.19116746)
|
||||
\lineto(135.51379089,956.19116746)
|
||||
\lineto(135.51379089,954.97371818)
|
||||
\lineto(129.35492979,954.97371818)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0}
|
||||
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(209.26109472,964.6846666)
|
||||
\curveto(208.21074631,964.6846666)(207.3752419,964.29317311)(206.75458148,963.51018611)
|
||||
\curveto(206.13869537,962.72719912)(205.83075231,961.66014063)(205.83075231,960.30901064)
|
||||
\curveto(205.83075231,958.96265496)(206.13869537,957.89798362)(206.75458148,957.11499663)
|
||||
\curveto(207.3752419,956.33200964)(208.21074631,955.94051614)(209.26109472,955.94051614)
|
||||
\curveto(210.31144312,955.94051614)(211.14217322,956.33200964)(211.75328502,957.11499663)
|
||||
\curveto(212.36917113,957.89798362)(212.67711418,958.96265496)(212.67711418,960.30901064)
|
||||
\curveto(212.67711418,961.66014063)(212.36917113,962.72719912)(211.75328502,963.51018611)
|
||||
\curveto(211.14217322,964.29317311)(210.31144312,964.6846666)(209.26109472,964.6846666)
|
||||
\closepath
|
||||
\moveto(211.2877897,955.16707777)
|
||||
\lineto(213.19273976,953.08309105)
|
||||
\lineto(211.44534196,953.08309105)
|
||||
\lineto(209.86265789,954.79468152)
|
||||
\curveto(209.70510563,954.7851329)(209.5833607,954.77797143)(209.49742311,954.77319712)
|
||||
\curveto(209.41625982,954.76842281)(209.33748369,954.76603565)(209.26109472,954.76603565)
|
||||
\curveto(207.75718677,954.76603565)(206.55406042,955.2673383)(205.65171565,956.26994359)
|
||||
\curveto(204.7541452,957.2773232)(204.30535997,958.62367888)(204.30535997,960.30901064)
|
||||
\curveto(204.30535997,961.99911671)(204.7541452,963.34547239)(205.65171565,964.34807768)
|
||||
\curveto(206.55406042,965.35545729)(207.75718677,965.85914709)(209.26109472,965.85914709)
|
||||
\curveto(210.76022835,965.85914709)(211.95858039,965.35545729)(212.85615084,964.34807768)
|
||||
\curveto(213.7537213,963.34547239)(214.20250652,961.99911671)(214.20250652,960.30901064)
|
||||
\curveto(214.20250652,959.0676898)(213.9518552,958.00540562)(213.45055255,957.12215809)
|
||||
\curveto(212.95402422,956.23891057)(212.23310327,955.58721713)(211.2877897,955.16707777)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0}
|
||||
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(217.8405311,956.19116746)
|
||||
\lineto(222.8893649,956.19116746)
|
||||
\lineto(222.8893649,954.97371818)
|
||||
\lineto(216.10029477,954.97371818)
|
||||
\lineto(216.10029477,956.19116746)
|
||||
\curveto(216.64934052,956.75931046)(217.39652018,957.52081306)(218.34183375,958.47567524)
|
||||
\curveto(219.29192162,959.43531174)(219.88871049,960.053585)(220.13220034,960.33049504)
|
||||
\curveto(220.5953085,960.85089493)(220.91757449,961.29013153)(221.09899831,961.64820485)
|
||||
\curveto(221.28519643,962.01105248)(221.3782955,962.36673865)(221.3782955,962.71526334)
|
||||
\curveto(221.3782955,963.28340634)(221.17777444,963.7465145)(220.77673232,964.10458782)
|
||||
\curveto(220.38046451,964.46266114)(219.86245178,964.6416978)(219.22269411,964.6416978)
|
||||
\curveto(218.76913457,964.6416978)(218.28931633,964.56292167)(217.78323937,964.40536941)
|
||||
\curveto(217.28193672,964.24781715)(216.74482674,964.00910161)(216.17190943,963.68922277)
|
||||
\lineto(216.17190943,965.15016192)
|
||||
\curveto(216.75437536,965.38410315)(217.29864681,965.56075266)(217.80472377,965.68011043)
|
||||
\curveto(218.31080073,965.7994682)(218.77390888,965.85914709)(219.19404825,965.85914709)
|
||||
\curveto(220.30168838,965.85914709)(221.1849359,965.58223706)(221.84379081,965.02841699)
|
||||
\curveto(222.50264572,964.47459692)(222.83207317,963.73457873)(222.83207317,962.80836241)
|
||||
\curveto(222.83207317,962.3691258)(222.74852273,961.9513736)(222.58142185,961.55510579)
|
||||
\curveto(222.41909528,961.16361229)(222.12070084,960.70050413)(221.68623855,960.16578131)
|
||||
\curveto(221.56688078,960.02732629)(221.18732306,959.62628417)(220.54756539,958.96265496)
|
||||
\curveto(219.90780773,958.30380005)(219.00546296,957.37997088)(217.8405311,956.19116746)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
{
|
||||
\newrgbcolor{curcolor}{0 0 0}
|
||||
\pscustom[linestyle=none,fillstyle=solid,fillcolor=curcolor]
|
||||
{
|
||||
\newpath
|
||||
\moveto(231.54845954,1040.42175805)
|
||||
\lineto(229.58621775,1035.10078852)
|
||||
\lineto(233.5178628,1035.10078852)
|
||||
\closepath
|
||||
\moveto(230.73205238,1041.84688986)
|
||||
\lineto(232.37202818,1041.84688986)
|
||||
\lineto(236.44690255,1031.15482054)
|
||||
\lineto(234.94299461,1031.15482054)
|
||||
\lineto(233.96903518,1033.89766217)
|
||||
\lineto(229.1493683,1033.89766217)
|
||||
\lineto(228.17540887,1031.15482054)
|
||||
\lineto(226.65001653,1031.15482054)
|
||||
\closepath
|
||||
}
|
||||
}
|
||||
\end{pspicture}
|
321
Annexe-Exercices/Images/cycle2.eps
Normal file
321
Annexe-Exercices/Images/cycle2.eps
Normal file
@ -0,0 +1,321 @@
|
||||
%!PS-Adobe-3.0 EPSF-3.0
|
||||
%%Creator: cairo 1.16.0 (https://cairographics.org)
|
||||
%%CreationDate: Sun Nov 27 20:53:10 2022
|
||||
%%Pages: 1
|
||||
%%DocumentData: Clean7Bit
|
||||
%%LanguageLevel: 2
|
||||
%%BoundingBox: 0 0 221 72
|
||||
%%EndComments
|
||||
%%BeginProlog
|
||||
50 dict begin
|
||||
/q { gsave } bind def
|
||||
/Q { grestore } bind def
|
||||
/cm { 6 array astore concat } bind def
|
||||
/w { setlinewidth } bind def
|
||||
/J { setlinecap } bind def
|
||||
/j { setlinejoin } bind def
|
||||
/M { setmiterlimit } bind def
|
||||
/d { setdash } bind def
|
||||
/m { moveto } bind def
|
||||
/l { lineto } bind def
|
||||
/c { curveto } bind def
|
||||
/h { closepath } bind def
|
||||
/re { exch dup neg 3 1 roll 5 3 roll moveto 0 rlineto
|
||||
0 exch rlineto 0 rlineto closepath } bind def
|
||||
/S { stroke } bind def
|
||||
/f { fill } bind def
|
||||
/f* { eofill } bind def
|
||||
/n { newpath } bind def
|
||||
/W { clip } bind def
|
||||
/W* { eoclip } bind def
|
||||
/BT { } bind def
|
||||
/ET { } bind def
|
||||
/BDC { mark 3 1 roll /BDC pdfmark } bind def
|
||||
/EMC { mark /EMC pdfmark } bind def
|
||||
/cairo_store_point { /cairo_point_y exch def /cairo_point_x exch def } def
|
||||
/Tj { show currentpoint cairo_store_point } bind def
|
||||
/TJ {
|
||||
{
|
||||
dup
|
||||
type /stringtype eq
|
||||
{ show } { -0.001 mul 0 cairo_font_matrix dtransform rmoveto } ifelse
|
||||
} forall
|
||||
currentpoint cairo_store_point
|
||||
} bind def
|
||||
/cairo_selectfont { cairo_font_matrix aload pop pop pop 0 0 6 array astore
|
||||
cairo_font exch selectfont cairo_point_x cairo_point_y moveto } bind def
|
||||
/Tf { pop /cairo_font exch def /cairo_font_matrix where
|
||||
{ pop cairo_selectfont } if } bind def
|
||||
/Td { matrix translate cairo_font_matrix matrix concatmatrix dup
|
||||
/cairo_font_matrix exch def dup 4 get exch 5 get cairo_store_point
|
||||
/cairo_font where { pop cairo_selectfont } if } bind def
|
||||
/Tm { 2 copy 8 2 roll 6 array astore /cairo_font_matrix exch def
|
||||
cairo_store_point /cairo_font where { pop cairo_selectfont } if } bind def
|
||||
/g { setgray } bind def
|
||||
/rg { setrgbcolor } bind def
|
||||
/d1 { setcachedevice } bind def
|
||||
/cairo_data_source {
|
||||
CairoDataIndex CairoData length lt
|
||||
{ CairoData CairoDataIndex get /CairoDataIndex CairoDataIndex 1 add def }
|
||||
{ () } ifelse
|
||||
} def
|
||||
/cairo_flush_ascii85_file { cairo_ascii85_file status { cairo_ascii85_file flushfile } if } def
|
||||
/cairo_image { image cairo_flush_ascii85_file } def
|
||||
/cairo_imagemask { imagemask cairo_flush_ascii85_file } def
|
||||
%%EndProlog
|
||||
%%BeginSetup
|
||||
%%BeginResource: font BitstreamVeraSans-Roman
|
||||
11 dict begin
|
||||
/FontType 42 def
|
||||
/FontName /BitstreamVeraSans-Roman def
|
||||
/PaintType 0 def
|
||||
/FontMatrix [ 1 0 0 1 0 0 ] def
|
||||
/FontBBox [ 0 0 0 0 ] def
|
||||
/Encoding 256 array def
|
||||
0 1 255 { Encoding exch /.notdef put } for
|
||||
Encoding 32 /space put
|
||||
Encoding 43 /plus put
|
||||
Encoding 45 /hyphen put
|
||||
Encoding 48 /zero put
|
||||
Encoding 49 /one put
|
||||
Encoding 50 /two put
|
||||
Encoding 51 /three put
|
||||
Encoding 52 /four put
|
||||
Encoding 54 /six put
|
||||
Encoding 55 /seven put
|
||||
Encoding 57 /nine put
|
||||
Encoding 61 /equal put
|
||||
Encoding 65 /A put
|
||||
Encoding 74 /J put
|
||||
Encoding 75 /K put
|
||||
Encoding 81 /Q put
|
||||
/CharStrings 17 dict dup begin
|
||||
/.notdef 0 def
|
||||
/one 1 def
|
||||
/six 2 def
|
||||
/zero 3 def
|
||||
/space 4 def
|
||||
/K 5 def
|
||||
/four 6 def
|
||||
/Q 7 def
|
||||
/hyphen 8 def
|
||||
/equal 9 def
|
||||
/nine 10 def
|
||||
/J 11 def
|
||||
/A 12 def
|
||||
/three 13 def
|
||||
/two 14 def
|
||||
/seven 15 def
|
||||
/plus 16 def
|
||||
end readonly def
|
||||
/sfnts [
|
||||
<00010000000900800003001063767420ffd31d3900000b04000001fc6670676de7b4f1c40000
|
||||
0d000000008b676c7966eeb0ff5e0000009c00000a6868656164dd84a2d000000d8c00000036
|
||||
686865611045077400000dc400000024686d747853bc081400000de8000000446c6f636114b6
|
||||
175000000e2c000000246d617870044c063a00000e5000000020707265703b07f10000000e70
|
||||
0000056800020066fe96046605a400030007001a400c04fb0006fb0108057f0204002fc4d4ec
|
||||
310010d4ecd4ec301311211125211121660400fc73031bfce5fe96070ef8f2720629000100e1
|
||||
0000045a05d5000a004b40154203a00402a005810700a009081f061c03001f010b10d4ecc4fc
|
||||
ec31002fec32f4ecd4ec304b53585922014bb00f5458bd000bffc00001000b000b0040381137
|
||||
3859b40f030f04025d3721110535253311211521fe014afe990165ca014afca4aa047348b848
|
||||
fad5aa0000000002008fffe3049605f0000b0024005840241306000d860c00a01606a01c16a5
|
||||
10a00c8922911c8c250c22091c191e131c03211f1b2510fcececf4ece4310010e4f4e4fce410
|
||||
ee10ee10ee111239304014cb00cb01cd02cd03cd04cb05cb0607a41eb21e025d015d01220615
|
||||
141633323635342601152e01232202033e0133320015140023200011100021321602a4889f9f
|
||||
88889f9f01094c9b4cc8d30f3bb26be10105fef0e2fefdfeee0150011b4c9b033bbaa2a1bbbb
|
||||
a1a2ba0279b82426fef2feef575dfeefebe6feea018d0179016201a51e00000000020087ffe3
|
||||
048f05f0000b00170023401306a01200a00c91128c18091c0f1e031c151b1810fcecf4ec3100
|
||||
10e4f4ec10ee30012202111012333212111002273200111000232200111000028b9c9d9d9c9d
|
||||
9d9d9dfb0109fef7fbfbfef701090550fecdfeccfecdfecd0133013301340133a0fe73fe86fe
|
||||
87fe73018d0179017a018d00000100c90000056a05d5000a00ef402808110506050711060605
|
||||
0311040504021105050442080502030300af09060501040608011c00040b10fcec32d4c41139
|
||||
31002f3cec321739304b5358071004ed071005ed071005ed071004ed5922b2080301015d4092
|
||||
140201040209081602280528083702360534084702460543085502670276027705830288058f
|
||||
0894029b08e702150603090509061b031907050a030a07180328052b062a0736043605360635
|
||||
07300c41034004450540064007400c62036004680567077705700c8b038b058e068f078f0c9a
|
||||
039d069d07b603b507c503c507d703d607e803e904e805ea06f703f805f9062c5d71005d7113
|
||||
33110121090121011123c9ca029e0104fd1b031afef6fd33ca05d5fd890277fd48fce302cffd
|
||||
3100000000020064000004a405d50002000d008c401d010d030d0003030d4200030b07a00501
|
||||
038109010c0a001c0608040c0e10dcd43cc4ec32113931002fe4d43cec321239304b53580710
|
||||
04c9071005c95922014bb00b544bb00d545b58bd000e00400001000e000effc0381137385940
|
||||
2a0b002a0048005900690077008a000716012b0026012b0336014e014f0c4f0d560166017501
|
||||
7a0385010d5d005d09012103331133152311231121350306fe0201fe35fed5d5c9fd5e0525fc
|
||||
e303cdfc33a8fea00160c300000000020073fef805d905f0000b001d0052402a1110020f010c
|
||||
0d0c0e010d0d0c420f1e0c06951200951891128c0d1e0d1b0f0c0309191b33031915101e10fc
|
||||
ecfcec1139391139310010c4e4f4ec10ee391239304b5358071005ed071005ed173959220122
|
||||
001110003332001110001301232706062320001110002120001110020327dcfefd0103dcdc01
|
||||
01feff3f010af4dd212310fec5fe870179013b013a0178d1054cfeb8fee5fee6feb80148011a
|
||||
011b0148facffeddef020201a50161016201a5fe5bfe9efefcfe8e000001006401df027f0283
|
||||
00030011b6009c020401000410dccc310010d4ec301321152164021bfde50283a400000200d9
|
||||
016005db03a200030007001c400d009c02069c040805010400230810fc3cc432310010d4ecd4
|
||||
ec301321152115211521d90502fafe0502fafe03a2a8f0aa000000020081ffe3048705f00018
|
||||
002400584023071f1901860019a00aa504a00089161fa01091168c25071c1c21131e0022221c
|
||||
0d1b2510fcece4f4ecec310010e4f4ec10e6fef5ee10ee111239304016c419c21ac01bc01cc0
|
||||
1dc21ec41f07aa12bc12e912035d015d37351e01333212130e01232200353400332000111000
|
||||
212226013236353426232206151416e14c9c4bc8d30f3ab26ce0fefb0110e201030111feb1fe
|
||||
e54c9c013e889f9f88889f9f1fb82426010d0112565c010febe60116fe73fe86fe9ffe5b1e02
|
||||
97baa2a1bbbba1a2ba000001ff96fe66019305d5000b004d40130b0200079505b000810c0508
|
||||
0639011c00040c10fcece43939310010e4fcec11393930014bb0105458bd000cffc00001000c
|
||||
000c00403811373859400d300d400d500d600d8f0d9f0d065d13331110062b013533323635c9
|
||||
cacde34d3f866e05d5fa93fef2f4aa96c2000000000200100000056805d50002000a00ba4041
|
||||
00110100040504021105050401110a030a0011020003030a0711050406110505040911030a08
|
||||
110a030a4200030795010381090509080706040302010009050a0b10d4c4173931002f3ce4d4
|
||||
ec1239304b5358071005ed0705ed071005ed0705ed071008ed071005ed071005ed071008ed59
|
||||
22b2200c01015d403a0f005800760070008c000507010802060309041601190256015802500c
|
||||
67016802780176027c0372047707780887018802800c980299039604175d005d090121013301
|
||||
230321032302bcfeee0225fe7be50239d288fd5f88d5050efd1903aefa2b017ffe8100000001
|
||||
009cffe3047305f00028007b402e0015130a86091f862013a0150da00993061ca02093239106
|
||||
8c15a329161c13000314191c2620101c03141f09062910fcc4c4d4ecf4ec11173939310010ec
|
||||
e4f4e4ec10e6ee10ee10ee10ee11123930014bb016544bb014545b58bd002900400001002900
|
||||
29ffc038113738594009641e611f6120642104005d011e0115140421222627351e0133323635
|
||||
34262b013533323635342623220607353e01333204151406033f91a3fed0fee85ec76a54c86d
|
||||
bec7b9a5aeb6959ea39853be7273c959e6010c8e03251fc490ddf22525c33132968f8495a677
|
||||
70737b2426b42020d1b27cab0000000100960000044a05f0001c00a54027191a1b03181c1105
|
||||
0400110505044210a111940da014910400a00200100a02010a1c171003061d10fcc4d4ecc0c0
|
||||
11123931002fec32f4ecf4ec304b5358071005ed0705ed1117395922014bb015544bb016545b
|
||||
4bb014545b58bd001d00400001001d001dffc0381137385940325504560556077a047a05761b
|
||||
87190704000419041a041b051c74007606751a731b741c82008619821a821b821ca800a81b11
|
||||
5d005d25211521353600373e0135342623220607353e01333204151406070600018902c1fc4c
|
||||
73018d33614da7865fd3787ad458e80114455b19fef4aaaaaa7701913a6d974977964243cc31
|
||||
32e8c25ca5701dfeeb000000000100a80000046805d500060063401805110203020311040504
|
||||
4205a0008103050301040100060710fcccc411393931002ff4ec304b5358071005ed071005ed
|
||||
5922014bb0165458bd00070040000100070007ffc03811373859401258020106031a05390548
|
||||
056703b000b006075d005d13211501230121a803c0fde2d301fefd3305d556fa81052b000000
|
||||
000100d9000005db0504000b002340110009019c07030502150400170a0615080c10dcfc3cfc
|
||||
3cec31002fd43cfc3cc43001112115211123112135211103ae022dfdd3a8fdd3022d0504fdd3
|
||||
aafdd3022daa022d013500b800cb00cb00c100aa009c01a600b800660000007100cb00a002b2
|
||||
0085007500b800c301cb0189022d00cb00a600f000d300aa008700cb03aa0400014a003300cb
|
||||
000000d9050200f4015400b4009c01390114013907060400044e04b4045204b804e704cd0037
|
||||
047304cd04600473013303a2055605a60556053903c5021200c9001f00b801df007300ba03e9
|
||||
033303bc0444040e00df03cd03aa00e503aa0404000000cb008f00a4007b00b80014016f007f
|
||||
027b0252008f00c705cd009a009a006f00cb00cd019e01d300f000ba018300d5009803040248
|
||||
009e01d500c100cb00f600830354027f00000333026600d300c700a400cd008f009a00730400
|
||||
05d5010a00fe022b00a400b4009c00000062009c0000001d032d05d505d505d505f0007f007b
|
||||
005400a406b80614072301d300b800cb00a601c301ec069300a000d3035c037103db01850423
|
||||
04a80448008f0139011401390360008f05d5019a0614072306660179046004600460047b009c
|
||||
00000277046001aa00e904600762007b00c5007f027b000000b4025205cd006600bc00660077
|
||||
061000cd013b01850389008f007b0000001d00cd074a042f009c009c0000077d006f0000006f
|
||||
0335006a006f007b00ae00b2002d0396008f027b00f600830354063705f6008f009c04e10266
|
||||
008f018d02f600cd03440029006604ee007300001400b6060504030201002c2010b002254964
|
||||
b040515820c859212d2cb002254964b040515820c859212d2c20100720b00050b00d7920b8ff
|
||||
ff5058041b0559b0051cb0032508b0042523e120b00050b00d7920b8ffff5058041b0559b005
|
||||
1cb0032508e12d2c4b505820b0fd454459212d2cb002254560442d2c4b5358b00225b0022545
|
||||
445921212d2c45442d000001000000020000253fbf425f0f3cf5001f080000000000bab9f0b8
|
||||
00000000bac26791fe89fe1d0a4c076d00000008000100000000000000010000076dfe1d0000
|
||||
0abcfe89fe890a4c00010000000000000000000000000000001104cd0066051700e10517008f
|
||||
05170087028b0000053f00c905170064064c007302e3006406b400d905170081025cff960579
|
||||
00100517009c05170096051700a806b400d900000022006000cc010e010e01a20206026c0282
|
||||
02a4030e034c03c6044004c4050a0534000100000011004d0007004200040002001000400007
|
||||
00000415056800030001b8028040fffbfe03fa1403f92503f83203f79603f60e03f5fe03f4fe
|
||||
03f32503f20e03f19603f02503ef8a4105effe03ee9603ed9603ecfa03ebfa03eafe03e93a03
|
||||
e84203e7fe03e63203e5e45305e59603e48a4105e45303e3e22f05e3fa03e22f03e1fe03e0fe
|
||||
03df3203de1403dd9603dcfe03db1203da7d03d9bb03d8fe03d68a4105d67d03d5d44705d57d
|
||||
03d44703d3d21b05d3fe03d21b03d1fe03d0fe03cffe03cefe03cd9603cccb1e05ccfe03cb1e
|
||||
03ca3203c9fe03c6851105c61c03c51603c4fe03c3fe03c2fe03c1fe03c0fe03bffe03befe03
|
||||
bdfe03bcfe03bbfe03ba1103b9862505b9fe03b8b7bb05b8fe03b7b65d05b7bb03b78004b6b5
|
||||
2505b65d40ff03b64004b52503b4fe03b39603b2fe03b1fe03b0fe03affe03ae6403ad0e03ac
|
||||
ab2505ac6403abaa1205ab2503aa1203a98a4105a9fa03a8fe03a7fe03a6fe03a51203a4fe03
|
||||
a3a20e05a33203a20e03a16403a08a4105a096039ffe039e9d0c059efe039d0c039c9b19059c
|
||||
64039b9a10059b19039a1003990a0398fe0397960d0597fe03960d03958a410595960394930e
|
||||
05942803930e0392fa039190bb0591fe03908f5d0590bb039080048f8e25058f5d038f40048e
|
||||
25038dfe038c8b2e058cfe038b2e038a8625058a410389880b05891403880b03878625058764
|
||||
038685110586250385110384fe038382110583fe0382110381fe0380fe037ffe0340ff7e7d7d
|
||||
057efe037d7d037c64037b5415057b25037afe0379fe03780e03770c03760a0375fe0374fa03
|
||||
73fa0372fa0371fa0370fe036ffe036efe036c21036bfe036a1142056a530369fe03687d0367
|
||||
11420566fe0365fe0364fe0363fe0362fe03613a0360fa035e0c035dfe035bfe035afe035958
|
||||
0a0559fa03580a035716190557320356fe035554150555420354150353011005531803521403
|
||||
514a130551fe03500b034ffe034e4d10054efe034d10034cfe034b4a13054bfe034a4910054a
|
||||
1303491d0d05491003480d0347fe0346960345960344fe0343022d0543fa0342bb03414b0340
|
||||
fe033ffe033e3d12053e14033d3c0f053d12033c3b0d053c40ff0f033b0d033afe0339fe0338
|
||||
37140538fa033736100537140336350b05361003350b03341e03330d0332310b0532fe03310b
|
||||
03302f0b05300d032f0b032e2d09052e10032d09032c32032b2a25052b64032a2912052a2503
|
||||
2912032827250528410327250326250b05260f03250b0324fe0323fe03220f03210110052112
|
||||
032064031ffa031e1d0d051e64031d0d031c1142051cfe031bfa031a42031911420519fe0318
|
||||
64031716190517fe031601100516190315fe0314fe0313fe031211420512fe0311022d051142
|
||||
03107d030f64030efe030d0c16050dfe030c0110050c16030bfe030a100309fe0308022d0508
|
||||
fe030714030664030401100504fe03401503022d0503fe0302011005022d0301100300fe0301
|
||||
b80164858d012b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b
|
||||
2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b
|
||||
2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b
|
||||
2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b
|
||||
2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b002b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b
|
||||
2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b
|
||||
2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b
|
||||
2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b
|
||||
2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b1d00>
|
||||
] def
|
||||
/f-0-0 currentdict end definefont pop
|
||||
%%EndResource
|
||||
%%EndSetup
|
||||
%%Page: 1 1
|
||||
%%BeginPageSetup
|
||||
%%PageBoundingBox: 0 0 221 72
|
||||
%%EndPageSetup
|
||||
q 0 0 221 72 rectclip
|
||||
1 0 0 -1 0 72 cm q
|
||||
1 0 0 rg
|
||||
2.834646 w
|
||||
0 J
|
||||
0 j
|
||||
[] 0.0 d
|
||||
4 M q 1 0 0 1 0 0 cm
|
||||
1.418 15.598 67 36.262 re S Q
|
||||
0 0 1 rg
|
||||
q 1 0 0 1 0 0 cm
|
||||
152.316 15.598 67 36.262 re S Q
|
||||
0 g
|
||||
BT
|
||||
11.000012 0 0 -11.000012 14.845262 37.733471 Tm
|
||||
/f-0-0 1 Tf
|
||||
(1600 K)Tj
|
||||
14.066635 0 Td
|
||||
(400 K)Tj
|
||||
ET
|
||||
q 1 0 0 1 0 0 cm
|
||||
132.438 33.73 m 132.438 45.918 122.555 55.801 110.367 55.801 c 98.176 55.801
|
||||
88.297 45.918 88.297 33.73 c 88.297 21.539 98.176 11.66 110.367 11.66 c
|
||||
122.555 11.66 132.438 21.539 132.438 33.73 c h
|
||||
132.438 33.73 m S Q
|
||||
0.749999 w
|
||||
q 1 0 0 1 0 0 cm
|
||||
68.645 33.73 m 88.059 33.73 l S Q
|
||||
80.559 33.73 m 77.559 36.73 l 88.059 33.73 l 77.559 30.73 l h
|
||||
80.559 33.73 m f*
|
||||
0.799999 w
|
||||
q -1 0 0 -1 0 0 cm
|
||||
-80.559 -33.73 m -77.559 -36.73 l -88.059 -33.73 l -77.559 -30.73 l h
|
||||
-80.559 -33.73 m S Q
|
||||
0.751181 w
|
||||
q 1 0 0 1 0 0 cm
|
||||
132.816 33.73 m 152.23 33.73 l S Q
|
||||
144.719 33.73 m 141.715 36.734 l 152.23 33.73 l 141.715 30.723 l h
|
||||
144.719 33.73 m f*
|
||||
0.80126 w
|
||||
q -1 0 0 -1 0 0 cm
|
||||
-144.719 -33.73 m -141.715 -36.734 l -152.23 -33.73 l -141.715 -30.723
|
||||
l h
|
||||
-144.719 -33.73 m S Q
|
||||
0.749999 w
|
||||
q 1 0 0 1 0 0 cm
|
||||
123.629 16.664 m 136.855 2.457 l S Q
|
||||
131.746 7.945 m 131.898 12.188 l 136.855 2.457 l 127.504 8.098 l h
|
||||
131.746 7.945 m f*
|
||||
0.585519 w
|
||||
q -0.931019 1 -1 -0.931019 0 0 cm
|
||||
-61.449 -74.536 m -59.253 -76.733 l -66.937 -74.536 l -59.252 -72.339 l
|
||||
h
|
||||
-61.449 -74.536 m S Q
|
||||
BT
|
||||
11.000012 0 0 -11.000012 124.448734 69.022348 Tm
|
||||
/f-0-0 1 Tf
|
||||
[(Q)-28(-=-1109 J)]TJ
|
||||
1.52038 5.532564 Td
|
||||
(A=3327 J)Tj
|
||||
-9.162768 -5.576694 Td
|
||||
(Q+=4436 J)Tj
|
||||
ET
|
||||
Q Q
|
||||
showpage
|
||||
%%Trailer
|
||||
end
|
||||
%%EOF
|
63
Annexe-Exercices/Images/cycle2.eps_tex
Normal file
63
Annexe-Exercices/Images/cycle2.eps_tex
Normal file
@ -0,0 +1,63 @@
|
||||
%% Creator: Inkscape 1.0.2 (e86c870879, 2021-01-15), www.inkscape.org
|
||||
%% PDF/EPS/PS + LaTeX output extension by Johan Engelen, 2010
|
||||
%% Accompanies image file 'cycle2.eps' (pdf, eps, ps)
|
||||
%%
|
||||
%% To include the image in your LaTeX document, write
|
||||
%% \input{<filename>.pdf_tex}
|
||||
%% instead of
|
||||
%% \includegraphics{<filename>.pdf}
|
||||
%% To scale the image, write
|
||||
%% \def\svgwidth{<desired width>}
|
||||
%% \input{<filename>.pdf_tex}
|
||||
%% instead of
|
||||
%% \includegraphics[width=<desired width>]{<filename>.pdf}
|
||||
%%
|
||||
%% Images with a different path to the parent latex file can
|
||||
%% be accessed with the `import' package (which may need to be
|
||||
%% installed) using
|
||||
%% \usepackage{import}
|
||||
%% in the preamble, and then including the image with
|
||||
%% \import{<path to file>}{<filename>.pdf_tex}
|
||||
%% Alternatively, one can specify
|
||||
%% \graphicspath{{<path to file>/}}
|
||||
%%
|
||||
%% For more information, please see info/svg-inkscape on CTAN:
|
||||
%% http://tug.ctan.org/tex-archive/info/svg-inkscape
|
||||
%%
|
||||
\begingroup%
|
||||
\makeatletter%
|
||||
\providecommand\color[2][]{%
|
||||
\errmessage{(Inkscape) Color is used for the text in Inkscape, but the package 'color.sty' is not loaded}%
|
||||
\renewcommand\color[2][]{}%
|
||||
}%
|
||||
\providecommand\transparent[1]{%
|
||||
\errmessage{(Inkscape) Transparency is used (non-zero) for the text in Inkscape, but the package 'transparent.sty' is not loaded}%
|
||||
\renewcommand\transparent[1]{}%
|
||||
}%
|
||||
\providecommand\rotatebox[2]{#2}%
|
||||
\newcommand*\fsize{\dimexpr\f@size pt\relax}%
|
||||
\newcommand*\lineheight[1]{\fontsize{\fsize}{#1\fsize}\selectfont}%
|
||||
\ifx\svgwidth\undefined%
|
||||
\setlength{\unitlength}{220.73231705bp}%
|
||||
\ifx\svgscale\undefined%
|
||||
\relax%
|
||||
\else%
|
||||
\setlength{\unitlength}{\unitlength * \real{\svgscale}}%
|
||||
\fi%
|
||||
\else%
|
||||
\setlength{\unitlength}{\svgwidth}%
|
||||
\fi%
|
||||
\global\let\svgwidth\undefined%
|
||||
\global\let\svgscale\undefined%
|
||||
\makeatother%
|
||||
\begin{picture}(1,0.3248728)%
|
||||
\lineheight{1}%
|
||||
\setlength\tabcolsep{0pt}%
|
||||
\put(0,0){\includegraphics[width=\unitlength]{cycle2.eps}}%
|
||||
\put(-0.09081244,0.57773466){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}1600 K\end{tabular}}}}%
|
||||
\put(-0.07302308,0.57969106){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}400 K\end{tabular}}}}%
|
||||
\put(-0.12758716,0.58803168){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}Q-=-1109 J\end{tabular}}}}%
|
||||
\put(-0.13015149,0.59832427){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}A=3327 J\end{tabular}}}}%
|
||||
\put(0.18294725,0.00997657){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}Q+=4436 J\end{tabular}}}}%
|
||||
\end{picture}%
|
||||
\endgroup%
|
63
Annexe-Exercices/Images/cycle2.eps_tex.bak
Normal file
63
Annexe-Exercices/Images/cycle2.eps_tex.bak
Normal file
@ -0,0 +1,63 @@
|
||||
%% Creator: Inkscape 1.0.2 (e86c870879, 2021-01-15), www.inkscape.org
|
||||
%% PDF/EPS/PS + LaTeX output extension by Johan Engelen, 2010
|
||||
%% Accompanies image file 'cycle2.eps' (pdf, eps, ps)
|
||||
%%
|
||||
%% To include the image in your LaTeX document, write
|
||||
%% \input{<filename>.pdf_tex}
|
||||
%% instead of
|
||||
%% \includegraphics{<filename>.pdf}
|
||||
%% To scale the image, write
|
||||
%% \def\svgwidth{<desired width>}
|
||||
%% \input{<filename>.pdf_tex}
|
||||
%% instead of
|
||||
%% \includegraphics[width=<desired width>]{<filename>.pdf}
|
||||
%%
|
||||
%% Images with a different path to the parent latex file can
|
||||
%% be accessed with the `import' package (which may need to be
|
||||
%% installed) using
|
||||
%% \usepackage{import}
|
||||
%% in the preamble, and then including the image with
|
||||
%% \import{<path to file>}{<filename>.pdf_tex}
|
||||
%% Alternatively, one can specify
|
||||
%% \graphicspath{{<path to file>/}}
|
||||
%%
|
||||
%% For more information, please see info/svg-inkscape on CTAN:
|
||||
%% http://tug.ctan.org/tex-archive/info/svg-inkscape
|
||||
%%
|
||||
\begingroup%
|
||||
\makeatletter%
|
||||
\providecommand\color[2][]{%
|
||||
\errmessage{(Inkscape) Color is used for the text in Inkscape, but the package 'color.sty' is not loaded}%
|
||||
\renewcommand\color[2][]{}%
|
||||
}%
|
||||
\providecommand\transparent[1]{%
|
||||
\errmessage{(Inkscape) Transparency is used (non-zero) for the text in Inkscape, but the package 'transparent.sty' is not loaded}%
|
||||
\renewcommand\transparent[1]{}%
|
||||
}%
|
||||
\providecommand\rotatebox[2]{#2}%
|
||||
\newcommand*\fsize{\dimexpr\f@size pt\relax}%
|
||||
\newcommand*\lineheight[1]{\fontsize{\fsize}{#1\fsize}\selectfont}%
|
||||
\ifx\svgwidth\undefined%
|
||||
\setlength{\unitlength}{220.73231705bp}%
|
||||
\ifx\svgscale\undefined%
|
||||
\relax%
|
||||
\else%
|
||||
\setlength{\unitlength}{\unitlength * \real{\svgscale}}%
|
||||
\fi%
|
||||
\else%
|
||||
\setlength{\unitlength}{\svgwidth}%
|
||||
\fi%
|
||||
\global\let\svgwidth\undefined%
|
||||
\global\let\svgscale\undefined%
|
||||
\makeatother%
|
||||
\begin{picture}(1,0.3248728)%
|
||||
\lineheight{1}%
|
||||
\setlength\tabcolsep{0pt}%
|
||||
\put(0,0){\includegraphics[width=\unitlength]{cycle2.eps}}%
|
||||
\put(-0.09081244,0.57773466){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}1600 K\end{tabular}}}}%
|
||||
\put(-0.07302308,0.57969106){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}400 K\end{tabular}}}}%
|
||||
\put(-0.12758716,0.58803168){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}Q-=-1109 J\end{tabular}}}}%
|
||||
\put(-0.13015149,0.59832427){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}A=3327 J\end{tabular}}}}%
|
||||
\put(0.18294725,0.00997657){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}Q+=4436 J\end{tabular}}}}%
|
||||
\end{picture}%
|
||||
\endgroup%
|
198
Annexe-Exercices/Images/cycle2.svg
Normal file
198
Annexe-Exercices/Images/cycle2.svg
Normal file
@ -0,0 +1,198 @@
|
||||
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||||
<svg
|
||||
xmlns:dc="http://purl.org/dc/elements/1.1/"
|
||||
xmlns:cc="http://creativecommons.org/ns#"
|
||||
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
|
||||
xmlns:svg="http://www.w3.org/2000/svg"
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
|
||||
xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
|
||||
width="210mm"
|
||||
height="297mm"
|
||||
viewBox="0 0 210 297"
|
||||
version="1.1"
|
||||
id="svg8"
|
||||
inkscape:version="1.0.2 (e86c870879, 2021-01-15)"
|
||||
sodipodi:docname="cycle2.svg">
|
||||
<defs
|
||||
id="defs2">
|
||||
<rect
|
||||
x="59.937914"
|
||||
y="20.739614"
|
||||
width="29.029567"
|
||||
height="5.2362938"
|
||||
id="rect1321" />
|
||||
<rect
|
||||
x="53.837845"
|
||||
y="41.407631"
|
||||
width="29.231069"
|
||||
height="7.3871984"
|
||||
id="rect1315" />
|
||||
<rect
|
||||
x="30.689245"
|
||||
y="40.896661"
|
||||
width="35.157742"
|
||||
height="9.7908561"
|
||||
id="rect1309" />
|
||||
<marker
|
||||
style="overflow:visible;"
|
||||
id="marker1177"
|
||||
refX="0.0"
|
||||
refY="0.0"
|
||||
orient="auto"
|
||||
inkscape:stockid="Arrow1Lend"
|
||||
inkscape:isstock="true">
|
||||
<path
|
||||
transform="scale(0.8) rotate(180) translate(12.5,0)"
|
||||
style="fill-rule:evenodd;stroke:#000000;stroke-width:1pt;stroke-opacity:1;fill:#000000;fill-opacity:1"
|
||||
d="M 0.0,0.0 L 5.0,-5.0 L -12.5,0.0 L 5.0,5.0 L 0.0,0.0 z "
|
||||
id="path1175" />
|
||||
</marker>
|
||||
<marker
|
||||
style="overflow:visible;"
|
||||
id="Arrow1Lend"
|
||||
refX="0.0"
|
||||
refY="0.0"
|
||||
orient="auto"
|
||||
inkscape:stockid="Arrow1Lend"
|
||||
inkscape:isstock="true">
|
||||
<path
|
||||
transform="scale(0.8) rotate(180) translate(12.5,0)"
|
||||
style="fill-rule:evenodd;stroke:#000000;stroke-width:1pt;stroke-opacity:1;fill:#000000;fill-opacity:1"
|
||||
d="M 0.0,0.0 L 5.0,-5.0 L -12.5,0.0 L 5.0,5.0 L 0.0,0.0 z "
|
||||
id="path896" />
|
||||
</marker>
|
||||
<rect
|
||||
x="65.510159"
|
||||
y="29.720464"
|
||||
width="20.666272"
|
||||
height="7.1284303"
|
||||
id="rect865" />
|
||||
<rect
|
||||
x="12.309253"
|
||||
y="29.569322"
|
||||
width="19.645599"
|
||||
height="7.2931106"
|
||||
id="rect859" />
|
||||
<marker
|
||||
style="overflow:visible"
|
||||
id="marker1177-7"
|
||||
refX="0"
|
||||
refY="0"
|
||||
orient="auto"
|
||||
inkscape:stockid="Arrow1Lend"
|
||||
inkscape:isstock="true">
|
||||
<path
|
||||
transform="matrix(-0.8,0,0,-0.8,-10,0)"
|
||||
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:1pt;stroke-opacity:1"
|
||||
d="M 0,0 5,-5 -12.5,0 5,5 Z"
|
||||
id="path1175-5" />
|
||||
</marker>
|
||||
</defs>
|
||||
<sodipodi:namedview
|
||||
id="base"
|
||||
pagecolor="#ffffff"
|
||||
bordercolor="#666666"
|
||||
borderopacity="1.0"
|
||||
inkscape:pageopacity="0.0"
|
||||
inkscape:pageshadow="2"
|
||||
inkscape:zoom="2.131036"
|
||||
inkscape:cx="204.582"
|
||||
inkscape:cy="141.81667"
|
||||
inkscape:document-units="mm"
|
||||
inkscape:current-layer="layer1"
|
||||
inkscape:document-rotation="0"
|
||||
showgrid="false"
|
||||
inkscape:window-width="1920"
|
||||
inkscape:window-height="995"
|
||||
inkscape:window-x="0"
|
||||
inkscape:window-y="0"
|
||||
inkscape:window-maximized="1" />
|
||||
<metadata
|
||||
id="metadata5">
|
||||
<rdf:RDF>
|
||||
<cc:Work
|
||||
rdf:about="">
|
||||
<dc:format>image/svg+xml</dc:format>
|
||||
<dc:type
|
||||
rdf:resource="http://purl.org/dc/dcmitype/StillImage" />
|
||||
<dc:title></dc:title>
|
||||
</cc:Work>
|
||||
</rdf:RDF>
|
||||
</metadata>
|
||||
<g
|
||||
inkscape:label="Calque 1"
|
||||
inkscape:groupmode="layer"
|
||||
id="layer1">
|
||||
<rect
|
||||
style="fill:none;stroke:#ff0000;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none"
|
||||
id="rect835"
|
||||
width="23.635927"
|
||||
height="12.791574"
|
||||
x="10.634826"
|
||||
y="26.796684" />
|
||||
<rect
|
||||
style="fill:none;stroke:#0000ff;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||
id="rect835-3"
|
||||
width="23.635927"
|
||||
height="12.791574"
|
||||
x="63.868355"
|
||||
y="26.796684" />
|
||||
<text
|
||||
xml:space="preserve"
|
||||
id="text857"
|
||||
style="font-style:normal;font-weight:normal;font-size:3.88056px;line-height:1.25;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;white-space:pre;shape-inside:url(#rect859);fill:#000000;fill-opacity:1;stroke:none;"
|
||||
transform="translate(3.0633106,1.603302)"><tspan
|
||||
x="12.308594"
|
||||
y="33.001745"><tspan>1600 K</tspan></tspan></text>
|
||||
<text
|
||||
xml:space="preserve"
|
||||
id="text863"
|
||||
style="font-style:normal;font-weight:normal;font-size:3.88056px;line-height:1.25;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;white-space:pre;shape-inside:url(#rect865);fill:#000000;fill-opacity:1;stroke:none;"
|
||||
transform="translate(4.4485583,1.4509583)"><tspan
|
||||
x="65.509766"
|
||||
y="33.154089"><tspan>400 K</tspan></tspan></text>
|
||||
<circle
|
||||
style="fill:none;stroke:#000000;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||
id="path869"
|
||||
cx="49.069561"
|
||||
cy="33.192471"
|
||||
r="7.7861185" />
|
||||
<path
|
||||
style="fill:none;stroke:#000000;stroke-width:0.264583px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;marker-end:url(#marker1177)"
|
||||
d="m 34.350954,33.192471 h 6.848483"
|
||||
id="path871" />
|
||||
<path
|
||||
style="fill:none;stroke:#000000;stroke-width:0.265;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1;marker-end:url(#Arrow1Lend)"
|
||||
d="m 56.989999,33.192471 h 6.848483"
|
||||
id="path871-6" />
|
||||
<path
|
||||
style="fill:none;stroke:#000000;stroke-width:0.264583px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;marker-end:url(#marker1177-7)"
|
||||
d="m 53.748023,27.172559 4.666642,-5.012401"
|
||||
id="path871-3" />
|
||||
<text
|
||||
xml:space="preserve"
|
||||
id="text1313"
|
||||
style="font-style:normal;font-weight:normal;font-size:3.88056px;line-height:1.25;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;white-space:pre;shape-inside:url(#rect1315);fill:#000000;fill-opacity:1;stroke:none;"
|
||||
transform="translate(0.19968276,0.80147888)"><tspan
|
||||
x="53.837891"
|
||||
y="44.841589"><tspan>Q-=-1109 J</tspan></tspan></text>
|
||||
<text
|
||||
xml:space="preserve"
|
||||
id="text1319"
|
||||
style="font-style:normal;font-weight:normal;font-size:3.88056px;line-height:1.25;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;white-space:pre;shape-inside:url(#rect1321);display:inline;fill:#000000;fill-opacity:1;stroke:none;"><tspan
|
||||
x="59.9375"
|
||||
y="24.17362"><tspan>A=3327 J</tspan></tspan></text>
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-style:normal;font-weight:normal;font-size:3.88056px;line-height:1.25;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;display:inline;fill:#000000;fill-opacity:1;stroke:none;stroke-width:0.264583"
|
||||
x="24.380829"
|
||||
y="45.814316"
|
||||
id="text1435"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan1433"
|
||||
x="24.380829"
|
||||
y="45.814316"
|
||||
style="stroke-width:0.264583">Q+=4436 J</tspan></text>
|
||||
</g>
|
||||
</svg>
|
After Width: | Height: | Size: 7.1 KiB |
Binary file not shown.
Binary file not shown.
@ -1055,6 +1055,88 @@
|
||||
|
||||
\end{Solution OS}
|
||||
\begin{Solution OS}{35}
|
||||
Comme la masse atomique du carbone vaut \SI{12}{uma} et celle de l'hydrogène \SI{1}{uma}, celle de la molécule de méthane (\(CH_4\)) vaut \SI{16}{uma}. Ainsi, sa masse molaire vaut \SI{16}{\gram\per\mol}. Si on a \SI{32}{\gram} de ce gaz, on a donc \SI{2}{\mol} de \(CH_4\).
|
||||
|
||||
\subsubsection*{Compression isotherme}
|
||||
Avec une température de 273 + 60 = \SI{333}{\kelvin}, on peut alors calculer les volumes~:
|
||||
\begin{align*}
|
||||
V_1&=\frac{n\cdot R\cdot T}{p_1}=\frac{2\cdot 8,31\cdot 333}{10^5}=\SI{0,055}{\metre\cubed}\\
|
||||
V_2&=\frac{n\cdot R\cdot T}{p_2}=\frac{2\cdot 8,31\cdot 333}{5\cdot 10^5}=\SI{0,011}{\metre\cubed}
|
||||
\end{align*}
|
||||
Le travail isotherme se calcule alors aisément par~:
|
||||
\begin{align*}
|
||||
A&=n\cdot R\cdot T\cdot ln(\frac{V_2}{V_1})\\
|
||||
&=2\cdot 8,31\cdot 333\cdot ln(\frac{0,011}{0,055}=\SI{-8907}{\joule}
|
||||
\end{align*}
|
||||
Comme la compression est isotherme, on a aussi~:
|
||||
\[\Delta U = 0\;\text{et}\;Q=A=\SI{-8907}{\joule}\]
|
||||
|
||||
\subsubsection*{Compression adiabatique}
|
||||
La compression adiabatique se fait de l'état 2 à l'état 3. Comme vu précédemment, le volume de l'état 2 est \(V_2=\SI{0,011}{\metre\cubed}\).
|
||||
|
||||
Des propriétés de la transformation adiabatique, on tire alors~:
|
||||
\begin{align*}
|
||||
p_2\cdot V_2&=p_3\cdot V_3\;\Rightarrow\; 5\cdot 0,011^{4/3}=30\cdot V_3^{4/3}\\
|
||||
V_3^{4/3}&=4,1\cdot 10^{-4}\;\Rightarrow\;V_3=\SI{2,87e-3}{\metre\cubed}
|
||||
\end{align*}
|
||||
Par la loi des gaz parfaits, on en tire que~:
|
||||
\[T_3=\frac{p_3\cdot V_3}{n\cdot R}=\SI{518}{\kelvin}=\SI{245}{\celsius}\]
|
||||
Le travail est alors~:
|
||||
\begin{align*}
|
||||
A&=-\frac{i}{2}\cdot (p_3\cdot V_3-p_2\cdot V_2)\\
|
||||
&=-\frac{6}{2}\cdot (30\cdot 10^5\cdot 2,87\cdot 10^{-3}-5\cdot 10^5\cdot 0,011)\\
|
||||
&=\SI{-9330}{\joule}
|
||||
\end{align*}
|
||||
Avec pour échange de chaleur et variation d'énergie interne~:
|
||||
\[Q=0\;\text{et}\;\Delta U=-A=\SI{9330}{\joule}\]
|
||||
|
||||
\end{Solution OS}
|
||||
\begin{Solution OS}{36}
|
||||
Le tableau complété est le suivant :
|
||||
\begin{center}
|
||||
\begin{tabular}{|c|c|c|c|}
|
||||
\hline
|
||||
Transformation & \(\Delta U\) & \(A\) & \(Q\) \\
|
||||
& J & J & J \\\hline
|
||||
isotherme & 0 & -1109 & -1109 \\
|
||||
adiabatique & 7200 & -7200 & 0 \\
|
||||
isotherme & 0 & 4436 & 4436 \\
|
||||
adiabatique & -7200 & 7200 & 0 \\
|
||||
\hline
|
||||
\(\sum\) & 0 & 3327 & \\
|
||||
\hline
|
||||
\end{tabular}
|
||||
\end{center}
|
||||
\smallskip
|
||||
\begin{enumerate}
|
||||
\item Les trois premières lignes sont justifiées par le premier principe. Pour la dernière, on a utilisé le fait que la somme des variations des énergies internes sur un cycle fermé est nulle, puisqu'on se retrouve dans l'état initial. Ainsi :
|
||||
\[\sum \Delta U = 0 + 7200 + 0 -7200=0\]
|
||||
\item le rendement est donné par :
|
||||
\[\eta = \frac{\sum A}{\sum Q_+}=\frac{3327}{4436}=75\%\]
|
||||
\item La loi des gaz parfaits donne :
|
||||
\[n\cdot R=\frac{p_0\cdot V_0}{T_0}=\frac{10^5\cdot 16\cdot 10^{-3}}{400}=4\]
|
||||
\item La température à l'état initial \(T_0=\SI{400}{\kelvin}\) est donnée. La première transformation étant isotherme, on a que \(T_1=\SI{400}{\kelvin}\). Pour la seconde transformation, on peut écrire :
|
||||
\begin{align*}
|
||||
\Delta U&=\frac{i}{2}\cdot n\cdot R\cdot \Delta T\\
|
||||
7200&=\frac{3}{2}\cdot 4\cdot \Delta T\\
|
||||
\Delta T&=1200=T_2-T_1=T_2-400\\
|
||||
&\Rightarrow\;T_2=\SI{1600}{\kelvin}
|
||||
\end{align*}
|
||||
Et comme la troisième est isotherme, on a : \(T_3=\SI{1600}{\kelvin}\). \item Le diagramme de bilan est donné à la figure \ref{exos:cycle1}.
|
||||
\end{enumerate}
|
||||
|
||||
\begin{figure}
|
||||
\def\svgwidth{7cm}
|
||||
\begin{center}
|
||||
%\input{Annexe-Exercices/Images/cycle2.eps_tex}
|
||||
\includegraphics[scale=0.9]{cycle2.eps}
|
||||
\end{center}
|
||||
\caption{Bilan du cycle\label{exos:cycle1}}
|
||||
\end{figure}
|
||||
|
||||
|
||||
\end{Solution OS}
|
||||
\begin{Solution OS}{37}
|
||||
Procédons simplement au calcul de l'incertitude absolue.
|
||||
|
||||
\smallskip
|
||||
@ -1102,7 +1184,7 @@
|
||||
Cette expression est légèrement différente de la précédente. Mais, le second terme est négligeable en raison de la présence de l'incertitude sur le temps au carré. On voit ainsi qu'il est nécessaire de faire attention aux ordres de grandeurs.
|
||||
|
||||
\end{Solution OS}
|
||||
\begin{Solution OS}{36}
|
||||
\begin{Solution OS}{38}
|
||||
\dots
|
||||
|
||||
\end{Solution OS}
|
||||
|
1064
SolutionsOS.tex.bak
1064
SolutionsOS.tex.bak
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue
Block a user