Fin des corrections de quelques équations de balistique
This commit is contained in:
parent
900f44f0fe
commit
0214be657b
Binary file not shown.
Binary file not shown.
@ -1,4 +1,4 @@
|
||||
This is pdfTeX, Version 3.14159265-2.6-1.40.19 (TeX Live 2019/dev/Debian) (preloaded format=latex 2021.1.1) 2 MAY 2021 21:46
|
||||
This is pdfTeX, Version 3.14159265-2.6-1.40.19 (TeX Live 2019/dev/Debian) (preloaded format=latex 2021.1.1) 5 MAY 2021 08:43
|
||||
entering extended mode
|
||||
\write18 enabled.
|
||||
%&-line parsing enabled.
|
||||
@ -612,9 +612,9 @@ Package: ifluatex 2016/05/16 v1.4 Provides the ifluatex switch (HO)
|
||||
Package ifluatex Info: LuaTeX not detected.
|
||||
)))
|
||||
\verbatim@out=\write7
|
||||
runsystem(touch w18-test-2021521306.tex)...executed.
|
||||
runsystem(touch w18-test-202155523.tex)...executed.
|
||||
|
||||
runsystem(rm -f w18-test-2021521306.tex)...executed.
|
||||
runsystem(rm -f w18-test-202155523.tex)...executed.
|
||||
|
||||
runsystem(rm -f "CoursMecaniqueOSDF.gnuploterrors")...executed.
|
||||
|
||||
@ -3796,11 +3796,11 @@ lmr/m/n/8 ou
|
||||
(./Annexe-Incertitudes/Annexe-Incertitudes.aux)) )
|
||||
Here is how much of TeX's memory you used:
|
||||
37174 strings out of 494372
|
||||
702064 string characters out of 6171427
|
||||
702063 string characters out of 6171427
|
||||
782636 words of memory out of 5000000
|
||||
39708 multiletter control sequences out of 15000+600000
|
||||
668987 words of font info for 119 fonts, out of 8000000 for 9000
|
||||
81 hyphenation exceptions out of 8191
|
||||
56i,29n,92p,2874b,1543s stack positions out of 5000i,500n,10000p,200000b,80000s
|
||||
|
||||
Output written on CoursMecaniqueOSDF.dvi (267 pages, 1710132 bytes).
|
||||
Output written on CoursMecaniqueOSDF.dvi (267 pages, 1710196 bytes).
|
||||
|
Binary file not shown.
@ -1,7 +1,7 @@
|
||||
%!PS-Adobe-2.0
|
||||
%%Creator: dvips(k) 5.998 Copyright 2018 Radical Eye Software
|
||||
%%Title: CoursMecaniqueOSDF.dvi
|
||||
%%CreationDate: Sun May 2 19:47:30 2021
|
||||
%%CreationDate: Wed May 5 06:43:59 2021
|
||||
%%Pages: 267
|
||||
%%PageOrder: Ascend
|
||||
%%BoundingBox: 0 0 596 842
|
||||
@ -23,7 +23,7 @@
|
||||
%DVIPSCommandLine: /usr/bin/dvips -o CoursMecaniqueOSDF.ps
|
||||
%+ CoursMecaniqueOSDF.dvi
|
||||
%DVIPSParameters: dpi=600
|
||||
%DVIPSSource: TeX output 2021.05.02:2146
|
||||
%DVIPSSource: TeX output 2021.05.05:0843
|
||||
%%BeginProcSet: tex.pro 0 0
|
||||
%!
|
||||
/TeXDict 300 dict def TeXDict begin/N{def}def/B{bind def}N/S{exch}N/X{S
|
||||
@ -142819,7 +142819,7 @@ b(OS)p 0 TeXcolorgray 0 TeXcolorgray 1 TeXcolorgray 1289
|
||||
0 TeXcolorgray 1 TeXcolorgray 1718 2660 a FX(&)p 0 TeXcolorgray
|
||||
0 TeXcolorgray 0 TeXcolorgray 1 TeXcolorgray 1416 2910
|
||||
a FY(\311ner)l(gie)p 0 TeXcolorgray 0 TeXcolorgray 0
|
||||
TeXcolorgray 1 TeXcolorgray 3240 5414 a FW(2)27 b(mai)g(2021)p
|
||||
TeXcolorgray 1 TeXcolorgray 3240 5414 a FW(5)27 b(mai)g(2021)p
|
||||
0 TeXcolorgray 0 TeXcolorgray 0 TeXcolorgray eop end
|
||||
%%Page: 2 2
|
||||
TeXDict begin 2 1 bop 0 TeXcolorgray 0 TeXcolorgray 0
|
||||
@ -1960170,14 +1960170,14 @@ FD(\014)t FJ(\))24 b(=)f(0)116 4805 y FW(o\371)28 b(on)f(a)g
|
||||
FJ(\))p FD(=)14 b FJ(cos\()p FD(\014)t FJ(\))116 5144
|
||||
y FW(En)26 b(mettan)n(t)h(en)f(\351vidence)g FD(T)1051
|
||||
5156 y FG(1)1114 5144 y FW(et)h(le)f(d\351pla\347an)n(t)g(\340)g
|
||||
(droite)116 5244 y(de)i(l'\351quation,)f(on)g(a)h(:)487
|
||||
5414 y FD(F)j FH(\000)18 b FD(P)35 b FJ(=)22 b FD(T)878
|
||||
5426 y FG(1)933 5414 y FH(\001)d FJ(\(sin)q(\()p FD(\013)p
|
||||
FJ(\))g(+)f(sin)q(\()p FD(\014)t FJ(\)\))p 0 TeXcolorgray
|
||||
0 TeXcolorgray 0 TeXcolorgray 0 TeXcolorgray 2426 602
|
||||
a FS(Figure)28 b FW(4.2)f(\025)g(Le)g(plan)h(inclin\351)p
|
||||
0 TeXcolorgray 2243 2037 a @beginspecial 0 @llx 0 @lly
|
||||
150 @urx 140 @ury 1700 @rwi @setspecial
|
||||
(droite)116 5244 y(de)i(l'\351quation,)f(on)g(a)h(:)334
|
||||
5414 y FD(F)i FH(\000)18 b FD(P)35 b FJ(=)23 b FD(T)725
|
||||
5426 y FG(1)780 5414 y FH(\001)18 b FJ(\(sin)q(\()p FD(\013)p
|
||||
FJ(\))i(+)e(cos)o(\()p FD(\013)p FJ(\))h FH(\001)g FJ(tan\()p
|
||||
FD(\014)t FJ(\)\))p 0 TeXcolorgray 0 TeXcolorgray 0 TeXcolorgray
|
||||
0 TeXcolorgray 2426 602 a FS(Figure)28 b FW(4.2)f(\025)g(Le)g(plan)h
|
||||
(inclin\351)p 0 TeXcolorgray 2243 2037 a @beginspecial
|
||||
0 @llx 0 @lly 150 @urx 140 @ury 1700 @rwi @setspecial
|
||||
%%BeginDocument: ./MecaniqueDim/Images/Planincline.eps
|
||||
%!PS-Adobe-2.0 EPSF-2.0
|
||||
%%Title: Planincline.fig
|
||||
@ -1960456,28 +1960456,29 @@ showpage
|
||||
%%EndDocument
|
||||
@endspecial 0 TeXcolorgray 2034 2307 a(et)g(donc)f(\034nalemen)n(t)h
|
||||
(a)n(v)n(ec)e FD(P)35 b FJ(=)23 b FD(m)18 b FH(\001)g
|
||||
FD(g)31 b FW(:)2573 2549 y FD(T)2622 2561 y FG(1)2682
|
||||
FD(g)31 b FW(:)2419 2549 y FD(T)2468 2561 y FG(1)2528
|
||||
2549 y FJ(=)2879 2492 y FD(F)f FH(\000)18 b FD(m)g FH(\001)h
|
||||
FD(g)p 2779 2530 541 4 v 2779 2606 a FJ(sin)q(\()p FD(\013)p
|
||||
FJ(\))g(+)f(sin)q(\()p FD(\014)t FJ(\))2034 2795 y FW(et)28
|
||||
b(p)r(our)f FD(T)2376 2807 y FG(2)2441 2795 y FW(:)2397
|
||||
3042 y FD(T)2446 3054 y FG(2)2506 3042 y FJ(=)2702 2986
|
||||
y(\()p FD(F)k FH(\000)18 b FD(m)g FH(\001)g FD(g)s FJ(\))h
|
||||
FH(\001)f FJ(cos)o(\()p FD(\013)p FJ(\))p 2604 3023 893
|
||||
4 v 2604 3099 a(cos)o(\()p FD(\014)t FJ(\))h FH(\001)g
|
||||
FJ(\(sin\()p FD(\013)p FJ(\))h(+)e(sin\()p FD(\014)t
|
||||
FJ(\)\))2034 3368 y FK(4.4.2)113 b(Plan)37 b(inclin\351)2117
|
||||
3541 y FW(A)26 b(l'instar)f(de)h(la)g(c)n(h)n(ute)f(libre,)h(on)f(p)r
|
||||
(eut)i(consid\351rer)d(le)2034 3640 y(probl\350me)j(historique)2766
|
||||
3610 y FU(a)2831 3640 y FW(suiv)-5 b(an)n(t)27 b(:)2117
|
||||
3750 y(d\351terminez)56 b(l'acc\351l\351ration)f(d'une)i(masse)e
|
||||
FD(m)i FW(qui)2034 3850 y(glisse)33 b(le)h(long)f(d'un)h(plan)f
|
||||
(inclin\351)h(faisan)n(t)f(un)i(angle)d FD(\013)2034
|
||||
3950 y FW(a)n(v)n(ec)26 b(l'horizon)n(tale.)g(On)i(n\351glige)e(les)i
|
||||
(frottemen)n(ts.)2034 4049 y(R\351p)r(onse)f(:)2117 4159
|
||||
y(Comme)34 b(le)g(mon)n(tre)g(la)g(\034gure)f(4.2,)h(deux)g(forces)f
|
||||
(ex-)2034 4259 y(t\351rieures)38 b(seulemen)n(t)h(s'exercen)n(t)f(sur)g
|
||||
(la)h(masse)f FD(m)p FW(.)h(Il)2034 4359 y(s'agit)27
|
||||
FD(g)p 2626 2530 848 4 v 2626 2606 a FJ(sin\()p FD(\013)p
|
||||
FJ(\))h(+)e(cos)o(\()p FD(\013)p FJ(\))h FH(\001)g FJ(tan)q(\()p
|
||||
FD(\014)t FJ(\))2034 2795 y FW(et)28 b(p)r(our)f FD(T)2376
|
||||
2807 y FG(2)2441 2795 y FW(:)2244 3042 y FD(T)2293 3054
|
||||
y FG(2)2352 3042 y FJ(=)2702 2986 y(\()p FD(F)k FH(\000)18
|
||||
b FD(m)g FH(\001)g FD(g)s FJ(\))h FH(\001)f FJ(cos)o(\()p
|
||||
FD(\013)p FJ(\))p 2450 3023 1200 4 v 2450 3099 a(cos)o(\()p
|
||||
FD(\014)t FJ(\))i FH(\001)e FJ(\(sin)q(\()p FD(\013)p
|
||||
FJ(\))h(+)f(cos\()p FD(\013)p FJ(\))h FH(\001)g FJ(tan\()p
|
||||
FD(\014)t FJ(\)\))2034 3368 y FK(4.4.2)113 b(Plan)37
|
||||
b(inclin\351)2117 3541 y FW(A)26 b(l'instar)f(de)h(la)g(c)n(h)n(ute)f
|
||||
(libre,)h(on)f(p)r(eut)i(consid\351rer)d(le)2034 3640
|
||||
y(probl\350me)j(historique)2766 3610 y FU(a)2831 3640
|
||||
y FW(suiv)-5 b(an)n(t)27 b(:)2117 3750 y(d\351terminez)56
|
||||
b(l'acc\351l\351ration)f(d'une)i(masse)e FD(m)i FW(qui)2034
|
||||
3850 y(glisse)33 b(le)h(long)f(d'un)h(plan)f(inclin\351)h(faisan)n(t)f
|
||||
(un)i(angle)d FD(\013)2034 3950 y FW(a)n(v)n(ec)26 b(l'horizon)n(tale.)
|
||||
g(On)i(n\351glige)e(les)i(frottemen)n(ts.)2034 4049 y(R\351p)r(onse)f
|
||||
(:)2117 4159 y(Comme)34 b(le)g(mon)n(tre)g(la)g(\034gure)f(4.2,)h(deux)
|
||||
g(forces)f(ex-)2034 4259 y(t\351rieures)38 b(seulemen)n(t)h(s'exercen)n
|
||||
(t)f(sur)g(la)h(masse)f FD(m)p FW(.)h(Il)2034 4359 y(s'agit)27
|
||||
b(de)h(son)g(p)r(oids)2736 4302 y FH(\000)-65 b(!)2745
|
||||
4359 y FD(P)49 b FW(et)28 b(de)g(la)g(r\351action)f(du)h(plan)g(in-)
|
||||
2034 4470 y(clin\351)2226 4413 y FH(\000)-65 b(!)2236
|
||||
@ -1961344,11 +1961345,11 @@ FJ(sin\(2)18 b FH(\001)h FD(\013)p FJ(\))24 b(=)1454
|
||||
3959 a(v)1536 3935 y FG(2)1533 3979 y FC(o)266 4125 y
|
||||
FH(\))46 b FD(\013)24 b FJ(=)f(arcsin)o(\()815 4069 y
|
||||
FD(g)e FH(\001)e FD(L)p 815 4106 V 855 4182 a(v)898 4158
|
||||
y FG(2)895 4203 y FC(o)984 4125 y FJ(\))p 0 TeXcolorgray
|
||||
-15 4334 a FW(4.)p 0 TeXcolorgray 41 w(P)n(our)38 b(d\351terminer)i
|
||||
(l'angle)f(n\351cessaire)f(p)r(our)h(at-)91 4433 y(teindre)34
|
||||
b(le)h(p)r(oin)n(t)f(C)g(de)g(co)r(ordonn\351e)f FJ(\()p
|
||||
FD(x)1430 4445 y FG(1)1468 4433 y FJ(;)14 b FD(y)1546
|
||||
y FG(2)895 4203 y FC(o)984 4125 y FJ(\))p FD(=)p FJ(2)p
|
||||
0 TeXcolorgray -15 4334 a FW(4.)p 0 TeXcolorgray 41 w(P)n(our)38
|
||||
b(d\351terminer)i(l'angle)f(n\351cessaire)f(p)r(our)h(at-)91
|
||||
4433 y(teindre)34 b(le)h(p)r(oin)n(t)f(C)g(de)g(co)r(ordonn\351e)f
|
||||
FJ(\()p FD(x)1430 4445 y FG(1)1468 4433 y FJ(;)14 b FD(y)1546
|
||||
4445 y FG(1)1583 4433 y FJ(\))p FW(,)34 b(il)91 4533
|
||||
y(faut)24 b(partir)f(de)h(l'\351quation)f(de)h(la)g(parab)r(ole)e
|
||||
(appli-)91 4632 y(qu\351e)28 b(au)f(p)r(oin)n(t)h(C)f(:)119
|
||||
|
@ -195,11 +195,11 @@ et on remplace dans la seconde~:
|
||||
où on a utilisé la définition de la tangente~:
|
||||
\[\tan(\beta)=\sin(\beta)/\cos(\beta)\]
|
||||
En mettant en évidence \(T_1\) et le déplaçant à droite de l'équation, on a~:
|
||||
\[F-P=T_1\cdot (\sin(\alpha)+\sin(\beta))\]
|
||||
\[F-P=T_1\cdot (\sin(\alpha)+\cos(\alpha)\cdot\tan(\beta))\]
|
||||
et donc finalement avec \(P=m\cdot g\)~:
|
||||
\[T_1=\frac{F-m\cdot g}{\sin(\alpha)+\sin(\beta)}\]
|
||||
\[T_1=\frac{F-m\cdot g}{\sin(\alpha)+\cos(\alpha)\cdot\tan(\beta)}\]
|
||||
et pour \(T_2\)~:
|
||||
\[T_2=\frac{(F-m\cdot g)\cdot \cos(\alpha)}{\cos(\beta)\cdot (\sin(\alpha)+\sin(\beta))}\]
|
||||
\[T_2=\frac{(F-m\cdot g)\cdot \cos(\alpha)}{\cos(\beta)\cdot (\sin(\alpha)+\cos(\alpha)\cdot\tan(\beta))}\]
|
||||
|
||||
\subsection{Plan incliné}
|
||||
\begin{figure}[t]
|
||||
@ -359,7 +359,7 @@ Car, \(2\cdot \sin(\alpha)\cos(\alpha)=\sin(2\cdot \alpha)\).\\
|
||||
Une conséquence de ce résultat est qu'on peut déterminer l'angle sous lequel on doit tirer pour que le tir une porté L~:
|
||||
\begin{align*}
|
||||
L&=\frac{v_o^2}{g}\cdot \sin(2\cdot \alpha)\;\Rightarrow\;\sin(2\cdot \alpha)=\frac{g\cdot L}{v_o^2}\\
|
||||
&\Rightarrow\;\alpha = \arcsin(\frac{g\cdot L}{v_o^2})
|
||||
&\Rightarrow\;\alpha = \arcsin(\frac{g\cdot L}{v_o^2})/2
|
||||
\end{align*}
|
||||
\item Pour déterminer l'angle nécessaire pour atteindre le point C de coordonnée \((x_1;y_1)\), il faut partir de l'équation de la parabole appliquée au point C~:
|
||||
\[y_1=-\frac{1}{2}\cdot g\cdot\left(\frac{x_1}{v_o}\right)^2\cdot \frac{1}{\cos^2(\alpha)}+x_1\cdot \tan(\alpha)\]
|
||||
|
Loading…
Reference in New Issue
Block a user