\caption[\emph{Discours concernant deux sciences nouvelles} de Galilée]{\emph{Discours concernant deux sciences nouvelles} de Galilée\label{deuxsciences}\par\scriptsize{Discours dans lesquels Galilée présente ses expériences sur la chute des corps et fonde la mécanique. Il tente aussi d'y créer une science de la résistance des matériaux\endnote{Voir le site de l'encyclopédie Wikipedia~: \url=http://commons.wikimedia.org/wiki/Image:Galileo_Galilei\%2C_Discorsi_e_Dimostrazioni_Matematiche_Intorno_a_Due_Nuove_Scienze\%2C_1638_\%281400x1400\%29.png=.}}}
Jusqu'à présent, les relations obtenues (la vitesse et la position) sont fonctions du temps. Il est néanmoins pratique dans bien des cas de disposer d'une relation où le facteur temps n'apparaît pas. Cette relation est facilement obtenue en éliminant le temps des deux équations de la vitesse et de la position. Pour le calcul on part de équations du MRUA suivantes~:
Elles constituent généralement un système de deux équations à deux inconnues, dont le temps $t$ est l'une d'elles. Pour résoudre ce système et éliminer le temps par substitution, on tire $t$ de la première équation~:
Il faut relever que la relation \ref{sanst} peut aussi être obtenue grâce au théorème de conservation de l'énergie. En effet, imaginons un objet de masse \(m\) à une hauteur \(h\) qu'on lance à une vitesse \(v_o\) vers le bas. Son énergie cinétique initiale est non nulle, de même que son énergie potentielle initiale. Son énergie potentielle finale est nulle. Par contre, son énergie cinétique finale ne l'est pas. Par conservation de l'énergie, on peut écrire~: