Premier commit.
This commit is contained in:
parent
051fbf5a45
commit
96de8a3bf7
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
|
@ -0,0 +1,674 @@
|
|||
GNU GENERAL PUBLIC LICENSE
|
||||
Version 3, 29 June 2007
|
||||
|
||||
Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
|
||||
Everyone is permitted to copy and distribute verbatim copies
|
||||
of this license document, but changing it is not allowed.
|
||||
|
||||
Preamble
|
||||
|
||||
The GNU General Public License is a free, copyleft license for
|
||||
software and other kinds of works.
|
||||
|
||||
The licenses for most software and other practical works are designed
|
||||
to take away your freedom to share and change the works. By contrast,
|
||||
the GNU General Public License is intended to guarantee your freedom to
|
||||
share and change all versions of a program--to make sure it remains free
|
||||
software for all its users. We, the Free Software Foundation, use the
|
||||
GNU General Public License for most of our software; it applies also to
|
||||
any other work released this way by its authors. You can apply it to
|
||||
your programs, too.
|
||||
|
||||
When we speak of free software, we are referring to freedom, not
|
||||
price. Our General Public Licenses are designed to make sure that you
|
||||
have the freedom to distribute copies of free software (and charge for
|
||||
them if you wish), that you receive source code or can get it if you
|
||||
want it, that you can change the software or use pieces of it in new
|
||||
free programs, and that you know you can do these things.
|
||||
|
||||
To protect your rights, we need to prevent others from denying you
|
||||
these rights or asking you to surrender the rights. Therefore, you have
|
||||
certain responsibilities if you distribute copies of the software, or if
|
||||
you modify it: responsibilities to respect the freedom of others.
|
||||
|
||||
For example, if you distribute copies of such a program, whether
|
||||
gratis or for a fee, you must pass on to the recipients the same
|
||||
freedoms that you received. You must make sure that they, too, receive
|
||||
or can get the source code. And you must show them these terms so they
|
||||
know their rights.
|
||||
|
||||
Developers that use the GNU GPL protect your rights with two steps:
|
||||
(1) assert copyright on the software, and (2) offer you this License
|
||||
giving you legal permission to copy, distribute and/or modify it.
|
||||
|
||||
For the developers' and authors' protection, the GPL clearly explains
|
||||
that there is no warranty for this free software. For both users' and
|
||||
authors' sake, the GPL requires that modified versions be marked as
|
||||
changed, so that their problems will not be attributed erroneously to
|
||||
authors of previous versions.
|
||||
|
||||
Some devices are designed to deny users access to install or run
|
||||
modified versions of the software inside them, although the manufacturer
|
||||
can do so. This is fundamentally incompatible with the aim of
|
||||
protecting users' freedom to change the software. The systematic
|
||||
pattern of such abuse occurs in the area of products for individuals to
|
||||
use, which is precisely where it is most unacceptable. Therefore, we
|
||||
have designed this version of the GPL to prohibit the practice for those
|
||||
products. If such problems arise substantially in other domains, we
|
||||
stand ready to extend this provision to those domains in future versions
|
||||
of the GPL, as needed to protect the freedom of users.
|
||||
|
||||
Finally, every program is threatened constantly by software patents.
|
||||
States should not allow patents to restrict development and use of
|
||||
software on general-purpose computers, but in those that do, we wish to
|
||||
avoid the special danger that patents applied to a free program could
|
||||
make it effectively proprietary. To prevent this, the GPL assures that
|
||||
patents cannot be used to render the program non-free.
|
||||
|
||||
The precise terms and conditions for copying, distribution and
|
||||
modification follow.
|
||||
|
||||
TERMS AND CONDITIONS
|
||||
|
||||
0. Definitions.
|
||||
|
||||
"This License" refers to version 3 of the GNU General Public License.
|
||||
|
||||
"Copyright" also means copyright-like laws that apply to other kinds of
|
||||
works, such as semiconductor masks.
|
||||
|
||||
"The Program" refers to any copyrightable work licensed under this
|
||||
License. Each licensee is addressed as "you". "Licensees" and
|
||||
"recipients" may be individuals or organizations.
|
||||
|
||||
To "modify" a work means to copy from or adapt all or part of the work
|
||||
in a fashion requiring copyright permission, other than the making of an
|
||||
exact copy. The resulting work is called a "modified version" of the
|
||||
earlier work or a work "based on" the earlier work.
|
||||
|
||||
A "covered work" means either the unmodified Program or a work based
|
||||
on the Program.
|
||||
|
||||
To "propagate" a work means to do anything with it that, without
|
||||
permission, would make you directly or secondarily liable for
|
||||
infringement under applicable copyright law, except executing it on a
|
||||
computer or modifying a private copy. Propagation includes copying,
|
||||
distribution (with or without modification), making available to the
|
||||
public, and in some countries other activities as well.
|
||||
|
||||
To "convey" a work means any kind of propagation that enables other
|
||||
parties to make or receive copies. Mere interaction with a user through
|
||||
a computer network, with no transfer of a copy, is not conveying.
|
||||
|
||||
An interactive user interface displays "Appropriate Legal Notices"
|
||||
to the extent that it includes a convenient and prominently visible
|
||||
feature that (1) displays an appropriate copyright notice, and (2)
|
||||
tells the user that there is no warranty for the work (except to the
|
||||
extent that warranties are provided), that licensees may convey the
|
||||
work under this License, and how to view a copy of this License. If
|
||||
the interface presents a list of user commands or options, such as a
|
||||
menu, a prominent item in the list meets this criterion.
|
||||
|
||||
1. Source Code.
|
||||
|
||||
The "source code" for a work means the preferred form of the work
|
||||
for making modifications to it. "Object code" means any non-source
|
||||
form of a work.
|
||||
|
||||
A "Standard Interface" means an interface that either is an official
|
||||
standard defined by a recognized standards body, or, in the case of
|
||||
interfaces specified for a particular programming language, one that
|
||||
is widely used among developers working in that language.
|
||||
|
||||
The "System Libraries" of an executable work include anything, other
|
||||
than the work as a whole, that (a) is included in the normal form of
|
||||
packaging a Major Component, but which is not part of that Major
|
||||
Component, and (b) serves only to enable use of the work with that
|
||||
Major Component, or to implement a Standard Interface for which an
|
||||
implementation is available to the public in source code form. A
|
||||
"Major Component", in this context, means a major essential component
|
||||
(kernel, window system, and so on) of the specific operating system
|
||||
(if any) on which the executable work runs, or a compiler used to
|
||||
produce the work, or an object code interpreter used to run it.
|
||||
|
||||
The "Corresponding Source" for a work in object code form means all
|
||||
the source code needed to generate, install, and (for an executable
|
||||
work) run the object code and to modify the work, including scripts to
|
||||
control those activities. However, it does not include the work's
|
||||
System Libraries, or general-purpose tools or generally available free
|
||||
programs which are used unmodified in performing those activities but
|
||||
which are not part of the work. For example, Corresponding Source
|
||||
includes interface definition files associated with source files for
|
||||
the work, and the source code for shared libraries and dynamically
|
||||
linked subprograms that the work is specifically designed to require,
|
||||
such as by intimate data communication or control flow between those
|
||||
subprograms and other parts of the work.
|
||||
|
||||
The Corresponding Source need not include anything that users
|
||||
can regenerate automatically from other parts of the Corresponding
|
||||
Source.
|
||||
|
||||
The Corresponding Source for a work in source code form is that
|
||||
same work.
|
||||
|
||||
2. Basic Permissions.
|
||||
|
||||
All rights granted under this License are granted for the term of
|
||||
copyright on the Program, and are irrevocable provided the stated
|
||||
conditions are met. This License explicitly affirms your unlimited
|
||||
permission to run the unmodified Program. The output from running a
|
||||
covered work is covered by this License only if the output, given its
|
||||
content, constitutes a covered work. This License acknowledges your
|
||||
rights of fair use or other equivalent, as provided by copyright law.
|
||||
|
||||
You may make, run and propagate covered works that you do not
|
||||
convey, without conditions so long as your license otherwise remains
|
||||
in force. You may convey covered works to others for the sole purpose
|
||||
of having them make modifications exclusively for you, or provide you
|
||||
with facilities for running those works, provided that you comply with
|
||||
the terms of this License in conveying all material for which you do
|
||||
not control copyright. Those thus making or running the covered works
|
||||
for you must do so exclusively on your behalf, under your direction
|
||||
and control, on terms that prohibit them from making any copies of
|
||||
your copyrighted material outside their relationship with you.
|
||||
|
||||
Conveying under any other circumstances is permitted solely under
|
||||
the conditions stated below. Sublicensing is not allowed; section 10
|
||||
makes it unnecessary.
|
||||
|
||||
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
|
||||
|
||||
No covered work shall be deemed part of an effective technological
|
||||
measure under any applicable law fulfilling obligations under article
|
||||
11 of the WIPO copyright treaty adopted on 20 December 1996, or
|
||||
similar laws prohibiting or restricting circumvention of such
|
||||
measures.
|
||||
|
||||
When you convey a covered work, you waive any legal power to forbid
|
||||
circumvention of technological measures to the extent such circumvention
|
||||
is effected by exercising rights under this License with respect to
|
||||
the covered work, and you disclaim any intention to limit operation or
|
||||
modification of the work as a means of enforcing, against the work's
|
||||
users, your or third parties' legal rights to forbid circumvention of
|
||||
technological measures.
|
||||
|
||||
4. Conveying Verbatim Copies.
|
||||
|
||||
You may convey verbatim copies of the Program's source code as you
|
||||
receive it, in any medium, provided that you conspicuously and
|
||||
appropriately publish on each copy an appropriate copyright notice;
|
||||
keep intact all notices stating that this License and any
|
||||
non-permissive terms added in accord with section 7 apply to the code;
|
||||
keep intact all notices of the absence of any warranty; and give all
|
||||
recipients a copy of this License along with the Program.
|
||||
|
||||
You may charge any price or no price for each copy that you convey,
|
||||
and you may offer support or warranty protection for a fee.
|
||||
|
||||
5. Conveying Modified Source Versions.
|
||||
|
||||
You may convey a work based on the Program, or the modifications to
|
||||
produce it from the Program, in the form of source code under the
|
||||
terms of section 4, provided that you also meet all of these conditions:
|
||||
|
||||
a) The work must carry prominent notices stating that you modified
|
||||
it, and giving a relevant date.
|
||||
|
||||
b) The work must carry prominent notices stating that it is
|
||||
released under this License and any conditions added under section
|
||||
7. This requirement modifies the requirement in section 4 to
|
||||
"keep intact all notices".
|
||||
|
||||
c) You must license the entire work, as a whole, under this
|
||||
License to anyone who comes into possession of a copy. This
|
||||
License will therefore apply, along with any applicable section 7
|
||||
additional terms, to the whole of the work, and all its parts,
|
||||
regardless of how they are packaged. This License gives no
|
||||
permission to license the work in any other way, but it does not
|
||||
invalidate such permission if you have separately received it.
|
||||
|
||||
d) If the work has interactive user interfaces, each must display
|
||||
Appropriate Legal Notices; however, if the Program has interactive
|
||||
interfaces that do not display Appropriate Legal Notices, your
|
||||
work need not make them do so.
|
||||
|
||||
A compilation of a covered work with other separate and independent
|
||||
works, which are not by their nature extensions of the covered work,
|
||||
and which are not combined with it such as to form a larger program,
|
||||
in or on a volume of a storage or distribution medium, is called an
|
||||
"aggregate" if the compilation and its resulting copyright are not
|
||||
used to limit the access or legal rights of the compilation's users
|
||||
beyond what the individual works permit. Inclusion of a covered work
|
||||
in an aggregate does not cause this License to apply to the other
|
||||
parts of the aggregate.
|
||||
|
||||
6. Conveying Non-Source Forms.
|
||||
|
||||
You may convey a covered work in object code form under the terms
|
||||
of sections 4 and 5, provided that you also convey the
|
||||
machine-readable Corresponding Source under the terms of this License,
|
||||
in one of these ways:
|
||||
|
||||
a) Convey the object code in, or embodied in, a physical product
|
||||
(including a physical distribution medium), accompanied by the
|
||||
Corresponding Source fixed on a durable physical medium
|
||||
customarily used for software interchange.
|
||||
|
||||
b) Convey the object code in, or embodied in, a physical product
|
||||
(including a physical distribution medium), accompanied by a
|
||||
written offer, valid for at least three years and valid for as
|
||||
long as you offer spare parts or customer support for that product
|
||||
model, to give anyone who possesses the object code either (1) a
|
||||
copy of the Corresponding Source for all the software in the
|
||||
product that is covered by this License, on a durable physical
|
||||
medium customarily used for software interchange, for a price no
|
||||
more than your reasonable cost of physically performing this
|
||||
conveying of source, or (2) access to copy the
|
||||
Corresponding Source from a network server at no charge.
|
||||
|
||||
c) Convey individual copies of the object code with a copy of the
|
||||
written offer to provide the Corresponding Source. This
|
||||
alternative is allowed only occasionally and noncommercially, and
|
||||
only if you received the object code with such an offer, in accord
|
||||
with subsection 6b.
|
||||
|
||||
d) Convey the object code by offering access from a designated
|
||||
place (gratis or for a charge), and offer equivalent access to the
|
||||
Corresponding Source in the same way through the same place at no
|
||||
further charge. You need not require recipients to copy the
|
||||
Corresponding Source along with the object code. If the place to
|
||||
copy the object code is a network server, the Corresponding Source
|
||||
may be on a different server (operated by you or a third party)
|
||||
that supports equivalent copying facilities, provided you maintain
|
||||
clear directions next to the object code saying where to find the
|
||||
Corresponding Source. Regardless of what server hosts the
|
||||
Corresponding Source, you remain obligated to ensure that it is
|
||||
available for as long as needed to satisfy these requirements.
|
||||
|
||||
e) Convey the object code using peer-to-peer transmission, provided
|
||||
you inform other peers where the object code and Corresponding
|
||||
Source of the work are being offered to the general public at no
|
||||
charge under subsection 6d.
|
||||
|
||||
A separable portion of the object code, whose source code is excluded
|
||||
from the Corresponding Source as a System Library, need not be
|
||||
included in conveying the object code work.
|
||||
|
||||
A "User Product" is either (1) a "consumer product", which means any
|
||||
tangible personal property which is normally used for personal, family,
|
||||
or household purposes, or (2) anything designed or sold for incorporation
|
||||
into a dwelling. In determining whether a product is a consumer product,
|
||||
doubtful cases shall be resolved in favor of coverage. For a particular
|
||||
product received by a particular user, "normally used" refers to a
|
||||
typical or common use of that class of product, regardless of the status
|
||||
of the particular user or of the way in which the particular user
|
||||
actually uses, or expects or is expected to use, the product. A product
|
||||
is a consumer product regardless of whether the product has substantial
|
||||
commercial, industrial or non-consumer uses, unless such uses represent
|
||||
the only significant mode of use of the product.
|
||||
|
||||
"Installation Information" for a User Product means any methods,
|
||||
procedures, authorization keys, or other information required to install
|
||||
and execute modified versions of a covered work in that User Product from
|
||||
a modified version of its Corresponding Source. The information must
|
||||
suffice to ensure that the continued functioning of the modified object
|
||||
code is in no case prevented or interfered with solely because
|
||||
modification has been made.
|
||||
|
||||
If you convey an object code work under this section in, or with, or
|
||||
specifically for use in, a User Product, and the conveying occurs as
|
||||
part of a transaction in which the right of possession and use of the
|
||||
User Product is transferred to the recipient in perpetuity or for a
|
||||
fixed term (regardless of how the transaction is characterized), the
|
||||
Corresponding Source conveyed under this section must be accompanied
|
||||
by the Installation Information. But this requirement does not apply
|
||||
if neither you nor any third party retains the ability to install
|
||||
modified object code on the User Product (for example, the work has
|
||||
been installed in ROM).
|
||||
|
||||
The requirement to provide Installation Information does not include a
|
||||
requirement to continue to provide support service, warranty, or updates
|
||||
for a work that has been modified or installed by the recipient, or for
|
||||
the User Product in which it has been modified or installed. Access to a
|
||||
network may be denied when the modification itself materially and
|
||||
adversely affects the operation of the network or violates the rules and
|
||||
protocols for communication across the network.
|
||||
|
||||
Corresponding Source conveyed, and Installation Information provided,
|
||||
in accord with this section must be in a format that is publicly
|
||||
documented (and with an implementation available to the public in
|
||||
source code form), and must require no special password or key for
|
||||
unpacking, reading or copying.
|
||||
|
||||
7. Additional Terms.
|
||||
|
||||
"Additional permissions" are terms that supplement the terms of this
|
||||
License by making exceptions from one or more of its conditions.
|
||||
Additional permissions that are applicable to the entire Program shall
|
||||
be treated as though they were included in this License, to the extent
|
||||
that they are valid under applicable law. If additional permissions
|
||||
apply only to part of the Program, that part may be used separately
|
||||
under those permissions, but the entire Program remains governed by
|
||||
this License without regard to the additional permissions.
|
||||
|
||||
When you convey a copy of a covered work, you may at your option
|
||||
remove any additional permissions from that copy, or from any part of
|
||||
it. (Additional permissions may be written to require their own
|
||||
removal in certain cases when you modify the work.) You may place
|
||||
additional permissions on material, added by you to a covered work,
|
||||
for which you have or can give appropriate copyright permission.
|
||||
|
||||
Notwithstanding any other provision of this License, for material you
|
||||
add to a covered work, you may (if authorized by the copyright holders of
|
||||
that material) supplement the terms of this License with terms:
|
||||
|
||||
a) Disclaiming warranty or limiting liability differently from the
|
||||
terms of sections 15 and 16 of this License; or
|
||||
|
||||
b) Requiring preservation of specified reasonable legal notices or
|
||||
author attributions in that material or in the Appropriate Legal
|
||||
Notices displayed by works containing it; or
|
||||
|
||||
c) Prohibiting misrepresentation of the origin of that material, or
|
||||
requiring that modified versions of such material be marked in
|
||||
reasonable ways as different from the original version; or
|
||||
|
||||
d) Limiting the use for publicity purposes of names of licensors or
|
||||
authors of the material; or
|
||||
|
||||
e) Declining to grant rights under trademark law for use of some
|
||||
trade names, trademarks, or service marks; or
|
||||
|
||||
f) Requiring indemnification of licensors and authors of that
|
||||
material by anyone who conveys the material (or modified versions of
|
||||
it) with contractual assumptions of liability to the recipient, for
|
||||
any liability that these contractual assumptions directly impose on
|
||||
those licensors and authors.
|
||||
|
||||
All other non-permissive additional terms are considered "further
|
||||
restrictions" within the meaning of section 10. If the Program as you
|
||||
received it, or any part of it, contains a notice stating that it is
|
||||
governed by this License along with a term that is a further
|
||||
restriction, you may remove that term. If a license document contains
|
||||
a further restriction but permits relicensing or conveying under this
|
||||
License, you may add to a covered work material governed by the terms
|
||||
of that license document, provided that the further restriction does
|
||||
not survive such relicensing or conveying.
|
||||
|
||||
If you add terms to a covered work in accord with this section, you
|
||||
must place, in the relevant source files, a statement of the
|
||||
additional terms that apply to those files, or a notice indicating
|
||||
where to find the applicable terms.
|
||||
|
||||
Additional terms, permissive or non-permissive, may be stated in the
|
||||
form of a separately written license, or stated as exceptions;
|
||||
the above requirements apply either way.
|
||||
|
||||
8. Termination.
|
||||
|
||||
You may not propagate or modify a covered work except as expressly
|
||||
provided under this License. Any attempt otherwise to propagate or
|
||||
modify it is void, and will automatically terminate your rights under
|
||||
this License (including any patent licenses granted under the third
|
||||
paragraph of section 11).
|
||||
|
||||
However, if you cease all violation of this License, then your
|
||||
license from a particular copyright holder is reinstated (a)
|
||||
provisionally, unless and until the copyright holder explicitly and
|
||||
finally terminates your license, and (b) permanently, if the copyright
|
||||
holder fails to notify you of the violation by some reasonable means
|
||||
prior to 60 days after the cessation.
|
||||
|
||||
Moreover, your license from a particular copyright holder is
|
||||
reinstated permanently if the copyright holder notifies you of the
|
||||
violation by some reasonable means, this is the first time you have
|
||||
received notice of violation of this License (for any work) from that
|
||||
copyright holder, and you cure the violation prior to 30 days after
|
||||
your receipt of the notice.
|
||||
|
||||
Termination of your rights under this section does not terminate the
|
||||
licenses of parties who have received copies or rights from you under
|
||||
this License. If your rights have been terminated and not permanently
|
||||
reinstated, you do not qualify to receive new licenses for the same
|
||||
material under section 10.
|
||||
|
||||
9. Acceptance Not Required for Having Copies.
|
||||
|
||||
You are not required to accept this License in order to receive or
|
||||
run a copy of the Program. Ancillary propagation of a covered work
|
||||
occurring solely as a consequence of using peer-to-peer transmission
|
||||
to receive a copy likewise does not require acceptance. However,
|
||||
nothing other than this License grants you permission to propagate or
|
||||
modify any covered work. These actions infringe copyright if you do
|
||||
not accept this License. Therefore, by modifying or propagating a
|
||||
covered work, you indicate your acceptance of this License to do so.
|
||||
|
||||
10. Automatic Licensing of Downstream Recipients.
|
||||
|
||||
Each time you convey a covered work, the recipient automatically
|
||||
receives a license from the original licensors, to run, modify and
|
||||
propagate that work, subject to this License. You are not responsible
|
||||
for enforcing compliance by third parties with this License.
|
||||
|
||||
An "entity transaction" is a transaction transferring control of an
|
||||
organization, or substantially all assets of one, or subdividing an
|
||||
organization, or merging organizations. If propagation of a covered
|
||||
work results from an entity transaction, each party to that
|
||||
transaction who receives a copy of the work also receives whatever
|
||||
licenses to the work the party's predecessor in interest had or could
|
||||
give under the previous paragraph, plus a right to possession of the
|
||||
Corresponding Source of the work from the predecessor in interest, if
|
||||
the predecessor has it or can get it with reasonable efforts.
|
||||
|
||||
You may not impose any further restrictions on the exercise of the
|
||||
rights granted or affirmed under this License. For example, you may
|
||||
not impose a license fee, royalty, or other charge for exercise of
|
||||
rights granted under this License, and you may not initiate litigation
|
||||
(including a cross-claim or counterclaim in a lawsuit) alleging that
|
||||
any patent claim is infringed by making, using, selling, offering for
|
||||
sale, or importing the Program or any portion of it.
|
||||
|
||||
11. Patents.
|
||||
|
||||
A "contributor" is a copyright holder who authorizes use under this
|
||||
License of the Program or a work on which the Program is based. The
|
||||
work thus licensed is called the contributor's "contributor version".
|
||||
|
||||
A contributor's "essential patent claims" are all patent claims
|
||||
owned or controlled by the contributor, whether already acquired or
|
||||
hereafter acquired, that would be infringed by some manner, permitted
|
||||
by this License, of making, using, or selling its contributor version,
|
||||
but do not include claims that would be infringed only as a
|
||||
consequence of further modification of the contributor version. For
|
||||
purposes of this definition, "control" includes the right to grant
|
||||
patent sublicenses in a manner consistent with the requirements of
|
||||
this License.
|
||||
|
||||
Each contributor grants you a non-exclusive, worldwide, royalty-free
|
||||
patent license under the contributor's essential patent claims, to
|
||||
make, use, sell, offer for sale, import and otherwise run, modify and
|
||||
propagate the contents of its contributor version.
|
||||
|
||||
In the following three paragraphs, a "patent license" is any express
|
||||
agreement or commitment, however denominated, not to enforce a patent
|
||||
(such as an express permission to practice a patent or covenant not to
|
||||
sue for patent infringement). To "grant" such a patent license to a
|
||||
party means to make such an agreement or commitment not to enforce a
|
||||
patent against the party.
|
||||
|
||||
If you convey a covered work, knowingly relying on a patent license,
|
||||
and the Corresponding Source of the work is not available for anyone
|
||||
to copy, free of charge and under the terms of this License, through a
|
||||
publicly available network server or other readily accessible means,
|
||||
then you must either (1) cause the Corresponding Source to be so
|
||||
available, or (2) arrange to deprive yourself of the benefit of the
|
||||
patent license for this particular work, or (3) arrange, in a manner
|
||||
consistent with the requirements of this License, to extend the patent
|
||||
license to downstream recipients. "Knowingly relying" means you have
|
||||
actual knowledge that, but for the patent license, your conveying the
|
||||
covered work in a country, or your recipient's use of the covered work
|
||||
in a country, would infringe one or more identifiable patents in that
|
||||
country that you have reason to believe are valid.
|
||||
|
||||
If, pursuant to or in connection with a single transaction or
|
||||
arrangement, you convey, or propagate by procuring conveyance of, a
|
||||
covered work, and grant a patent license to some of the parties
|
||||
receiving the covered work authorizing them to use, propagate, modify
|
||||
or convey a specific copy of the covered work, then the patent license
|
||||
you grant is automatically extended to all recipients of the covered
|
||||
work and works based on it.
|
||||
|
||||
A patent license is "discriminatory" if it does not include within
|
||||
the scope of its coverage, prohibits the exercise of, or is
|
||||
conditioned on the non-exercise of one or more of the rights that are
|
||||
specifically granted under this License. You may not convey a covered
|
||||
work if you are a party to an arrangement with a third party that is
|
||||
in the business of distributing software, under which you make payment
|
||||
to the third party based on the extent of your activity of conveying
|
||||
the work, and under which the third party grants, to any of the
|
||||
parties who would receive the covered work from you, a discriminatory
|
||||
patent license (a) in connection with copies of the covered work
|
||||
conveyed by you (or copies made from those copies), or (b) primarily
|
||||
for and in connection with specific products or compilations that
|
||||
contain the covered work, unless you entered into that arrangement,
|
||||
or that patent license was granted, prior to 28 March 2007.
|
||||
|
||||
Nothing in this License shall be construed as excluding or limiting
|
||||
any implied license or other defenses to infringement that may
|
||||
otherwise be available to you under applicable patent law.
|
||||
|
||||
12. No Surrender of Others' Freedom.
|
||||
|
||||
If conditions are imposed on you (whether by court order, agreement or
|
||||
otherwise) that contradict the conditions of this License, they do not
|
||||
excuse you from the conditions of this License. If you cannot convey a
|
||||
covered work so as to satisfy simultaneously your obligations under this
|
||||
License and any other pertinent obligations, then as a consequence you may
|
||||
not convey it at all. For example, if you agree to terms that obligate you
|
||||
to collect a royalty for further conveying from those to whom you convey
|
||||
the Program, the only way you could satisfy both those terms and this
|
||||
License would be to refrain entirely from conveying the Program.
|
||||
|
||||
13. Use with the GNU Affero General Public License.
|
||||
|
||||
Notwithstanding any other provision of this License, you have
|
||||
permission to link or combine any covered work with a work licensed
|
||||
under version 3 of the GNU Affero General Public License into a single
|
||||
combined work, and to convey the resulting work. The terms of this
|
||||
License will continue to apply to the part which is the covered work,
|
||||
but the special requirements of the GNU Affero General Public License,
|
||||
section 13, concerning interaction through a network will apply to the
|
||||
combination as such.
|
||||
|
||||
14. Revised Versions of this License.
|
||||
|
||||
The Free Software Foundation may publish revised and/or new versions of
|
||||
the GNU General Public License from time to time. Such new versions will
|
||||
be similar in spirit to the present version, but may differ in detail to
|
||||
address new problems or concerns.
|
||||
|
||||
Each version is given a distinguishing version number. If the
|
||||
Program specifies that a certain numbered version of the GNU General
|
||||
Public License "or any later version" applies to it, you have the
|
||||
option of following the terms and conditions either of that numbered
|
||||
version or of any later version published by the Free Software
|
||||
Foundation. If the Program does not specify a version number of the
|
||||
GNU General Public License, you may choose any version ever published
|
||||
by the Free Software Foundation.
|
||||
|
||||
If the Program specifies that a proxy can decide which future
|
||||
versions of the GNU General Public License can be used, that proxy's
|
||||
public statement of acceptance of a version permanently authorizes you
|
||||
to choose that version for the Program.
|
||||
|
||||
Later license versions may give you additional or different
|
||||
permissions. However, no additional obligations are imposed on any
|
||||
author or copyright holder as a result of your choosing to follow a
|
||||
later version.
|
||||
|
||||
15. Disclaimer of Warranty.
|
||||
|
||||
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
|
||||
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
|
||||
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
|
||||
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
|
||||
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||||
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
|
||||
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
|
||||
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
|
||||
|
||||
16. Limitation of Liability.
|
||||
|
||||
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
|
||||
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
|
||||
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
|
||||
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
|
||||
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
|
||||
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
|
||||
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
|
||||
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
|
||||
SUCH DAMAGES.
|
||||
|
||||
17. Interpretation of Sections 15 and 16.
|
||||
|
||||
If the disclaimer of warranty and limitation of liability provided
|
||||
above cannot be given local legal effect according to their terms,
|
||||
reviewing courts shall apply local law that most closely approximates
|
||||
an absolute waiver of all civil liability in connection with the
|
||||
Program, unless a warranty or assumption of liability accompanies a
|
||||
copy of the Program in return for a fee.
|
||||
|
||||
END OF TERMS AND CONDITIONS
|
||||
|
||||
How to Apply These Terms to Your New Programs
|
||||
|
||||
If you develop a new program, and you want it to be of the greatest
|
||||
possible use to the public, the best way to achieve this is to make it
|
||||
free software which everyone can redistribute and change under these terms.
|
||||
|
||||
To do so, attach the following notices to the program. It is safest
|
||||
to attach them to the start of each source file to most effectively
|
||||
state the exclusion of warranty; and each file should have at least
|
||||
the "copyright" line and a pointer to where the full notice is found.
|
||||
|
||||
TP_latex
|
||||
Copyright (C) 2019 Guyot
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
Also add information on how to contact you by electronic and paper mail.
|
||||
|
||||
If the program does terminal interaction, make it output a short
|
||||
notice like this when it starts in an interactive mode:
|
||||
|
||||
TP_latex Copyright (C) 2019 Guyot
|
||||
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
|
||||
This is free software, and you are welcome to redistribute it
|
||||
under certain conditions; type `show c' for details.
|
||||
|
||||
The hypothetical commands `show w' and `show c' should show the appropriate
|
||||
parts of the General Public License. Of course, your program's commands
|
||||
might be different; for a GUI interface, you would use an "about box".
|
||||
|
||||
You should also get your employer (if you work as a programmer) or school,
|
||||
if any, to sign a "copyright disclaimer" for the program, if necessary.
|
||||
For more information on this, and how to apply and follow the GNU GPL, see
|
||||
<http://www.gnu.org/licenses/>.
|
||||
|
||||
The GNU General Public License does not permit incorporating your program
|
||||
into proprietary programs. If your program is a subroutine library, you
|
||||
may consider it more useful to permit linking proprietary applications with
|
||||
the library. If this is what you want to do, use the GNU Lesser General
|
||||
Public License instead of this License. But first, please read
|
||||
<http://www.gnu.org/philosophy/why-not-lgpl.html>.
|
|
@ -0,0 +1,25 @@
|
|||
iter chisq delta/lim lambda a b
|
||||
0 1.4700000000e+02 0.00e+00 1.40e+01 1.000000e+00 1.000000e+00
|
||||
1 1.6935544886e+01 -7.68e+05 1.40e+00 7.830590e-01 9.780369e-01
|
||||
2 1.3496165132e+01 -2.55e+04 1.40e-01 6.629727e-01 1.501074e+00
|
||||
3 1.3285717162e+01 -1.58e+03 1.40e-02 6.251403e-01 1.695706e+00
|
||||
4 1.3285714286e+01 -2.16e-02 1.40e-03 6.250000e-01 1.696429e+00
|
||||
iter chisq delta/lim lambda a b
|
||||
|
||||
After 4 iterations the fit converged.
|
||||
final sum of squares of residuals : 13.2857
|
||||
rel. change during last iteration : -2.16481e-07
|
||||
|
||||
degrees of freedom (FIT_NDF) : 4
|
||||
rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 1.82248
|
||||
variance of residuals (reduced chisquare) = WSSR/ndf : 3.32143
|
||||
|
||||
Final set of parameters Asymptotic Standard Error
|
||||
======================= ==========================
|
||||
a = 0.625 +/- 0.1552 (24.84%)
|
||||
b = 1.69643 +/- 0.7761 (45.75%)
|
||||
|
||||
correlation matrix of the fit parameters:
|
||||
a b
|
||||
a 1.000
|
||||
b -0.969 1.000
|
Binary file not shown.
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,766 @@
|
|||
%\documentclass[11pt,a4paper]{article}
|
||||
\documentclass[12pt,a4paper,twoside]{scrartcl} % scrartcl est la classe d'articles de Koma-script
|
||||
% qui gère nativement le format A4 ; utilisez article pour un format de papier américain
|
||||
\usepackage[utf8]{inputenc} % gestion d'utf8
|
||||
\usepackage[francais]{babel} % gestion de la langue française
|
||||
\usepackage[T1]{fontenc} %
|
||||
\usepackage{amsmath} % symboles mathématiques
|
||||
\usepackage{amsfonts} % fontes pour les symboles mathématiques
|
||||
\usepackage{amssymb} % jeu de symboles suppélémentaires
|
||||
\usepackage{graphicx} % pour mettre des images
|
||||
\usepackage{caption} % pour des légendes
|
||||
\usepackage{lmodern} % fonte spéciale
|
||||
\usepackage{subcaption} % pour les subfigures et les subtables
|
||||
\usepackage{float} % pour placer exactement les figure (utilisation de H)
|
||||
\usepackage{url} % pour une bonne gestion des urls
|
||||
\usepackage{siunitx} % pour la gestion des unités
|
||||
\usepackage{latexsym}
|
||||
\usepackage{keyval}
|
||||
\usepackage{ifthen} % pour permettre des tests (avec gnuplot)
|
||||
\usepackage{moreverb}
|
||||
\usepackage[siunitx]{gnuplottex} % pour permettre l'utilisation de gnuplot avec siunitx
|
||||
\graphicspath{{./images/}} % nécessaire pour l'import des fichiers eps_tex dans un sous répertoire
|
||||
\usepackage{endnotes}
|
||||
\usepackage{multirow}
|
||||
\usepackage{tabularx}
|
||||
|
||||
\author{Vincent Guyot}
|
||||
\title{Relativités}
|
||||
|
||||
\begin{document}
|
||||
\renewcommand{\tablename}{Tableau}
|
||||
\maketitle
|
||||
\tableofcontents
|
||||
\newpage
|
||||
|
||||
\begin{quotation}
|
||||
\og C’est le développement de l'aptitude générale à penser, juger et travailler de façon autonome qui doit toujours rester au premier plan des préoccupations, et non l'acquisition de connaissances spécialisées \fg{} A. Einstein\endnote{Einstein A. dans \cite[p. 209]{T}.}
|
||||
\end{quotation}
|
||||
|
||||
\section{Introduction}
|
||||
Le but de cet exposé est de présenter l'évolution de deux idées fondamentales de l'histoire de la physique~: celle de relativité et celle d'expace.
|
||||
|
||||
Pour cela, nous reviendrons à Galilée pour la relativité et à Newton pour l’espace.
|
||||
Puis, nous verrons comment, et à partir de quoi, la relativité restreinte d'Einstein s'est développée. Alors, nous pourrons comprendre la relativité générale et le changement radical qu'elle a provoqué dans notre conception de l’espace.
|
||||
|
||||
Cela nous permettra d'aborder enfin, en guise de conclusion, l’une des conséquences
|
||||
les plus spectaculaires de cette dernière : le modèle standard de l'Univers très primitif, plus communément appelé “modèle du Big Bang”.
|
||||
|
||||
\section{Préliminaires}
|
||||
Comme on le sait, pour Galilée, le mouvement n’a de sens que par rapport à un autre
|
||||
corps qui en est privé~:
|
||||
\begin{quotation}
|
||||
\og Quand il [Aristote] écrit que tout ce qui se meut, se meut sur quelque chose d’immobile, je [Salviati] me demande s’il n’a pas voulu dire que tout ce qui se meut se meut respectivement à quelque chose d'immobile, cette dernière proposition ne soulevant aucune difficulté, alors que la première en soulève beaucoup \dots \fg\endnote{Passage de \cite{A}, reproduit dans \cite[pp. 11 et 18]{B} (le mot \og respectivement \fg{} est mis en évidence par moi).}
|
||||
\end{quotation}
|
||||
|
||||
Pour Einstein, cela remonte aux Grecs :
|
||||
\begin{quotation}
|
||||
\og Depuis le temps des Grecs on saït bien que pour décrire le mouvement d’un corps on doit le rapporter à un autre corps. Le mouvement d’un véhicule est décrit par rapport au sol, celui d’une planète par rapport à l'ensemble des étoiles fixes visibles. En physique, les corps auxquels les mouvements sont rapportés dans l'espace sont appelés systèmes de coordonnées. Les lois de la mécanique de Galilée et de Newton ne
|
||||
peuvent être formulées qu'en employant un système de coordonnées. \fg\endnote{Passage de \cite[p. 13]{C} (lui-même de \og Qu'est-ce que la théorie de la relativité ?\fg, publié dans le London Time le 29 nov. 1919).}
|
||||
\end{quotation}
|
||||
|
||||
De nos jours, on appelle le “corps” auquel on rapporte le mouvement~: “référentiel”, et les axes gradués qui nous permettent de repérer les positions : “système de coordonnées”.
|
||||
|
||||
Pour bien comprendre ce que signifie l’idée de relativité, nous devons d’abord préciser ce que l’on entend par homogénéité, isotropie et “invariance des lois” en tout point de l'espace.
|
||||
|
||||
Il existe plusieurs types d’invariance des lois~:
|
||||
\begin{description}
|
||||
\item [L'invariance par translation dans le temps] est chose connue. Il s’agit du fait que les lois de la physique persistent dans le temps, passé ou futur, que la marche des phénomènes physiques, à des instants différents de leur observation (dans les
|
||||
mêmes conditions), est la même. On parle de \og l’homogénéité du temps\fg.
|
||||
\item [L'invariance par translation dans l’espace] est la plus notoire. Il s’agit du fait que les lois de la physique sont les mêmes, pour deux référentiels issus l’un de l’autre par une translation (à Paris et à Marseille, par exemple). On parle alors de
|
||||
\og homogénéité de l'espace\fg.
|
||||
\item [L'isotropie de l'espace] est \og le dernier exemple simple, et qui ne concerne que l’espace, parce qu'il a plusieurs dimensions, c’est l'invariance par changement d'orientation ; autrement dit : il n'y a pas, dans l’espace, de direction absolue. \fg\endnote{\cite[p. 59]{D}.}
|
||||
\end{description}
|
||||
|
||||
Homogénéité et isotropie sont ce qu'on appelle des \emph{symétrie} de l’espace (Relevons qu'il en existe d’autres (permutation de particules identiques, miroir, \dots) et qu’à chacune d'entre elles correspond une loi de conservation. Par exemple, à l’homogénéité du tomps correspond la loi de conservation de l'énergie, à celle de l’espace, la loi de conservation de l'impulsion et à l’isotropie, la loi de conservation du moment cinétique\endnote{Voir \cite[pp. 107 et 222]{E}. Pour les personnes fortement intéressées par la physique, la physique quantique et ses propriétés de symétries, je conseille l'ouvrage cité ci-dessus.}).
|
||||
|
||||
Mais remarquons bien qu'il s’agit de symétries par rapport aux lois de la physique.
|
||||
Qu'est-ce que cela veut dire ? Prenons l'exemple du choc élastique entre deux objets. Ce processus obéit à la loi de conservation de l'énergie qui s'exprime dans un référentiel R par~:
|
||||
|
||||
\[\frac{1}{2}\cdot M_1\cdot v_1^2 + \frac{1}{2}\cdot M_2\cdot v_2^2 = \frac{1}{2}\cdot M_1\cdot w_1^2 + \frac{1}{2}\cdot M_2\cdot w_2^2\]
|
||||
où v désigne la vitesse avant le choc et w celle après, et où les indices représentent les particules.
|
||||
|
||||
Dans un référentiel R’, en translation uniforme V par rapport à R, l'expression numérique des vitesses est différente de celle dans R puisqu'on l’exprime par :
|
||||
|
||||
\[{v'}_{1,2}=v_{1,2}-V\;\;\text{et}\;\;{w'}_{1,2}=w_{1,2}-V\]
|
||||
|
||||
mais, le principe de conservation conserve sa forme particulière :
|
||||
|
||||
\[\frac{1}{2}\cdot M_1\cdot {v'}_1^2 + \frac{1}{2}\cdot M_2\cdot {v'}_2^2 = \frac{1}{2}\cdot M_1\cdot {w'}_1^2 + \frac{1}{2}\cdot M_2\cdot {w'}_2^2\]
|
||||
L'invariance n’est donc pas numérique, mais formelle (on parle aussi de covariance). C'est la forme de l'équation de conservation de l'énergie qui est préservée par les symétries (en tant que transformations) dont nous venons de parler (voir annexe II).
|
||||
|
||||
Mais les lois de la physique ne sont pas invariante sous toute transformation. Un
|
||||
exemple cher à Galilée\endnote{\cite[pp. 113-114]{J}.}, puisque c'est lui qui l’a découvert, est celui de la transformation d'échelle. Les lois qui régissent le vol dans l’air d’une maquette d’Airbus, par exemple, sont différente de celles qui régissent le vol (dans l’air) d’un Aïrbus grandeur nature. Pour étudier le vol d'un avion, les ingénieur le savent bien, il faut avoir recours à des grandeurs sans dimension qui permettent “d'immuniser” l'analyse du fait de la non-invariance des lois par changement d'échelle.
|
||||
|
||||
Ainsi donc, l’invariance des lois en tout point de l’espace doit être comprise comme
|
||||
une invariance dans la forme des lois sous l’action de transformations qui opèrent un changement de référentiel\endnote{\cite[p. 111]{J} : \og C'est Poincaré qui eut l'idée d'analyser ce qu'on peut faire dans une équation sans la modifier, c'est lui qui le premier attira l'attention sur les symétries des lois de la physique\fg.}.
|
||||
|
||||
\section{Le principe de relativité de Galilée}
|
||||
Le texte suivant, très connu et déjà maintes fois cité~:
|
||||
\begin{quotation}
|
||||
\og Enfermez-vous avec un ami dans la cabine principale à intérieur d'un grand bateau et prenez avec vous des mouches, des papillons et d’autres petits animaux volants. Prenez une grande cuve d’eau avec un poisson dedans, suspendez une bouteille qui se vide goutte à goutte dans un grand récipient en dessous d'elle. Avec le bateau à l'arrêt, observez soigneusement comment les petits animaux volent à des vitesses égales vers tous les côtés de la cabine. Le poisson nage indifféremment dans toutes les directions, les gouttes tombent dans le récipient en dessous, et si vous lancez quelque chose à votre ami, vous n'avez pas besoin de le lancer plus fort dans une direction que dans une autre, les distances étant égales, et si vous sautez à pieds joints, vous franchissez des distances égales dans toutes les directions. Lorsque
|
||||
vous aurez observé toutes ces choses soigneusement (bien qu'il n'y ait aucun doute que lorsque le bateau est à l'arrêt, les choses doivent se passer ainsi ), faites avancer le bateau à l'allure qui vous plaira, pour autant que Ja vitesse soit uniforme [c'est-à-dire constante] et ne fluctue pas de part et d'autre. Vous ne verrez pas le moindre changement dans aucun des effets mentionnés et même aucun d'eux ne vous permettra de dire si le bateau est en mouvement ou à l'arrêt \dots\fg\endnote{\cite{A}, extrait de la 2ème journée, traduit par M. Gruber, professeur à l'Ecole polytechnique de Lausanne dans \cite[p. 10.5]{I}.}
|
||||
\end{quotation}
|
||||
|
||||
nous mène maintenant à considérer le \emph{principe de relativité de Galilée}.
|
||||
|
||||
Pour ce faire, suivons concrètement l'exemple ci-dessus. Il s'agit d'un bateau en
|
||||
translation à vitesse constante par rapport à la terre. Galilée nous dit que le mouvement de ce bateau est \og comme nul \fg{}\endnote{\cite[p. 10]{T}.}? pour les mouvements des divers corps qu'il envisage, c'est-à-dire qu'il n'y a pas de différence entre la description de ces mouvements faite sur la terre et celle faite sur le navire.
|
||||
|
||||
Pour Galilée, il existe donc des référentiels dont le mouvement est « comme nul »,
|
||||
c'est-à-dire que les lois du mouvement sont dans ceux-ci inaffectées par leur mouvement propre (le mouvement du référentiel lui-même). Ces référentiels sont les référentiels se déplaçant l’un par rapport à l'autre avec une vitesse de translation constante.
|
||||
|
||||
Ainsi Newton ct Einstein énonceront successivement le principe de relativité de Galilée de la façon suivante :
|
||||
\begin{quotation}
|
||||
\og Les mouvements relatifs des corps enfermés dans un espace quelconque sont les mêmes que cet espace soit immobile, ou qu'il se mouve le long d'une ligne droite, sans rotation. \fg\endnote{Cité sans référence par F. Balibar, dans \cite[p. 26]{B}. La traduction donnée par Balibar doit être celle de Mme du Chastellet. Elle est imprécise car l'uniformité du mouvement n'y est pas explicitement formulée. Pour comparaison, voici la traduction de Mme M.-F. Biarnais dans \cite[p.50]{U}} pour Newton et,
|
||||
|
||||
\og Etant donné deux référontiels en translation uniforme l’un par rapport à l’autre, les lois auxquelles sont soumis les changements d'états des systèmes physiques restent les mêmes, quel que soit le référentiel auquel ces changements sont rapportés.\fg\endnote{Ibid, p.27, du célèbre article d'Einstein \cite{F} de 1905.} ou
|
||||
|
||||
\og Si K' est relntivoment à K un système de coordonnée qui effectue un mouvement uniforme sans rotation, les phénomènes de la nature se déroulent, relativement à K', conformément aux mêmes lois générales que relativement à K\fg\endnote{\cite[p. 21]{G}.} pour Einstein.
|
||||
\end{quotation}
|
||||
|
||||
Pour bien comprendre toute l’extension de ce principe et notamment son appellation
|
||||
actuelle de \og principe de relativité restreinte\fg, il faut en lier l’expression donnée par Galilée à une formulation mathématique précise~: la transformation de Galilée\endnote{Elle n'est pas due à Galilée lui-même. Son appellation vient du fait qu'elle est la formulation mathématique de l'idée de relativité de Galilée.}.
|
||||
|
||||
\subsection{Transformation de Galilée}
|
||||
Soient les deux référentiels S et S’, en translation uniforme l’un par rapport à l’autre, suivants :
|
||||
\begin{figure}
|
||||
\centering
|
||||
\def\svgwidth{10cm}
|
||||
\input{images/eps/referentiels.eps_tex}
|
||||
\caption{Référentiels}
|
||||
\end{figure}
|
||||
|
||||
On a l’équation suivante~:
|
||||
\[\overrightarrow{r}(x',y',z',t')=\overrightarrow{r}(x-vt,y,z,t)\]
|
||||
|
||||
On peut ainsi exprimer la transformation de Galilée pour passer de S à S' par~:
|
||||
\begin{align}\label{eq:transgalilee}
|
||||
x'&=x-vt\nonumber\\
|
||||
y'&=y\nonumber\\
|
||||
z'&=z\nonumber\\
|
||||
t'&=t
|
||||
\end{align}
|
||||
|
||||
ou sous forme matricielle~:
|
||||
\begin{equation*}
|
||||
\begin{pmatrix}
|
||||
x'\\
|
||||
y'\\
|
||||
z'\\
|
||||
t'
|
||||
\end{pmatrix}=
|
||||
\begin{pmatrix}
|
||||
1&0&0&-v\\
|
||||
0&1&0&0\\
|
||||
0&0&1&0\\
|
||||
0&0&0&1
|
||||
\end{pmatrix}\cdot
|
||||
\begin{pmatrix}
|
||||
x\\
|
||||
y\\
|
||||
z\\
|
||||
t
|
||||
\end{pmatrix}
|
||||
\end{equation*}
|
||||
|
||||
Le contenu de la matrice permettant de passer des anciennes coordonnées (non primées) aux nouvelles (primées) est caractéristique d'une transformation de Galilée en ce que, si le temps intervient dans la transformation des coordonnées d'espace (\(x' = x - v\cdot t\)), ces dernières n'interviennent pas dans la transformation du temps.
|
||||
\begin{itemize}
|
||||
\item Remarquons que la transformation présentée ci-dessus est une transformation de
|
||||
Galilée particulière. Celle-ci se fait en effet le long de l'axe x du référentiel S. En fait, on devrait parler des transformations de Galilée ou donner l'expression la plus générale les représentant.
|
||||
\item Remarquons aussi (voir annexe II) que l'équation \(x'=x - v_{ref}\cdot{t}\) implique ce que l’on appelle le fhéorème d’addition des vitesses~:
|
||||
\begin{equation}\label{eq:transvitgalilee}
|
||||
v =v'+ v_{ref}
|
||||
\end{equation}
|
||||
\item Contrairement à ce que dit son nom, qui est un hommage à Galilée, on doit cette transformation à Euler.
|
||||
\end{itemize}
|
||||
|
||||
Toute la signification du principe de relativité de Galilée tient dans l’invariance des lois du mouvement par une transformation de Galilée.
|
||||
|
||||
Il s’agit de relativité, puisqu'il existe une infinité de référentiels équivalents (en translation uniforme les uns par rapport aux autres) pour la description des lois du mouvement, c’est-à-dire par rapport auxquels les lois du mouvement sont formellement identiques.
|
||||
|
||||
Mais il faut bien comprendre à quel poïint cette idée de relativité est générale. En effet, soit un référentiel R à partir duquel on détermine la classe A des référentiels en translation uniforme par rapport à lui. Prenons alors un référentiel R’ qui ne soit pas en translation uniforme par rapport à R et appelons B la classe des référentiels qui sont par rapport à lui en translation uniforme. Le principe de relativité affirme alors~:
|
||||
\begin{itemize}
|
||||
\item que les lois sont (formellement) identiques dans tous les référentiels de la classe A et
|
||||
\item que les lois sont (formellement) identiques dans tous les référentiels de la classe B.
|
||||
\end{itemize}
|
||||
|
||||
Il ne dit rien d’une quelconque identité des lois entre les référentiels des deux classes. Nous savons que les lois dans À sont différentes de celles dans B (voir annexe O). Ainsi donc, les lois ne sont pas univoquement déterminées et certaines d’entre elles sont même sans doute plus simples que d’autres.
|
||||
|
||||
C’est en ce sens que la relativité de Galilée est restreinte. En effet, les référentiels envisagés ne sont pas quelconques. Ce sont les référentiels dans lesquels les lois de la nature sont les plus simples. Il faut entendre par là ce que Galilée voulait dire par \og mouvements « comme nuls »\fg. On peut comprendre ces mots de deux façons différentes~:
|
||||
\begin{itemize}
|
||||
\item le mouvement de translation uniforme d’un référentiel par rapport à un autre est
|
||||
comme nul pour la description, sous forme de lois, du mouvement de l’objet \og test \fg{} considéré~: les lois sont formellement identiques quand elles sont exprimées dans deux référentiels en translation uniforme l’un par rapport à l’autre.
|
||||
\item le mouvement du référentiel lui-même n’a pas d'influence sur celui de l'objet
|
||||
\og test\fg, en ce sens qu’il n’exerce aucune action sur lui.
|
||||
\end{itemize}
|
||||
|
||||
Comme nous l’avons vu, le premier sens définit l’idée de relativité. Le second, quant à lui, restreint cette idée à une classe particulière de référentiels : les référentiels inertiels. Un référentiel sera dit inertiel si, dans celui-ci, la loi d'inertie (voir ci-dessous la première loi de Newton) est valable.
|
||||
|
||||
Le mouvement d’un objet n’est en effet indépendant du référentiel dans lequel il est décrit, que si ce référentiel est inertiel, car, dans ce cas, un objet isolé (de tous les autres objets qui l’environnent) ne subit par définition absolument aucune action (aucune force), et en particulier de la part du référentiel lui-même.
|
||||
|
||||
Cette relativité restreinte est donc celle du sens commun. En effet, nous ne nous imaginons habituellement l'identité des lois qu'entre référentiels inertiels. Les lois du “ping pong” sont les mêmes à terre ou dans un train se déplaçant en ligne droite sans accélération. Qu'elles soient les mêmes entre un train accéléré et un référentiel en translation uniforme par rapport à celui-ci, nous ne le concevons même pas.
|
||||
|
||||
Remarquons enfin une propriété de la transformation de Galilée nécessitée par la relativité. Supposons donné un référentiel inertiel. La seconde loi de Newton (voir ci-dessous) et l'invariance des lois pour les référentiels inertiels impliquent le fait que s'il n'existe aucune force dans ce référentiel, il en sera de même dans tous les autres (voir annexe III). Et par conséquent, tous les autres référentiel, issus par transformation de Galilée de ce référentiel inertiel, seront inertiel : le principe d'inertie est préservé par toute transformation de Galilée.
|
||||
|
||||
La relativité restreinte de Galilée suppose donc l’équivalence formelle des lois du mouvement entre référentiels inertiels. Encore faut-il être très précis. On peut concevoir, comme on l’a vu, des référentiels inertiels ou non. La relativité de Galilée les concevra inertiels, mais pas la relativité générale d'Einstein. Mais, comme on le verra par la suite, on peut aussi concevoir des référentiels obéissant ou pas à une transformation de Galilée. La relativité restreinte de Galilée obéira aux transformations de Galilée, mais pas la relativité restreinte d’Einstein. On peut résumer cela comme suit :
|
||||
|
||||
\begin{table}
|
||||
\centering
|
||||
\begin{tabular}{cc|c|c|c}
|
||||
& \multicolumn{3}{c}{Référentiels} & \\
|
||||
& \multirow{5}{*}{\rotatebox[origin=c]{90}{de Galilée}} & Inertiels & \multicolumn{2}{c}{Non-inertiels} \\ \cline{3-4}
|
||||
\multirow{8}{*}{\rotatebox[origin=c]{90}{Transformation}} & & & & \\
|
||||
& & Mécanique classique & Mécanique des systèmes accélérés & \\
|
||||
& & Relativité restreinte de Galilée & & \\
|
||||
& & & & \\ \cline{2-5}
|
||||
& \multirow{5}{*}{\rotatebox[origin=c]{90}{de Lorentz}} & & & \\
|
||||
& & Relativité restreinte d'Einstein & Relativité générale d'Einstein \\
|
||||
& & Électromagnétisme & & \\
|
||||
& & & & \\ \cline{3-4}
|
||||
& & & \multicolumn{2}{c}{}
|
||||
\end{tabular}
|
||||
\caption{Tableau synoptique}
|
||||
\end{table}
|
||||
|
||||
|
||||
où la transformation de Lorentz est une transformation que nous retrouverons par la suite.
|
||||
|
||||
Remarquons en substance que :
|
||||
\begin{itemize}
|
||||
\item le problème de savoir si Galilée a oui ou non pensé le principe d'inertie, s’il est intéressant du point de vue de l'émergence des idées\endnote{Voir \cite{H}.}, n’est en fait pas essentiel ici, où c’est la connaissance du principe de relativité de Galilée tel qu’il est formulé actuellement, qui va nous permettre de bien saïsir l’extension qu’en fera Einstein dans la relativité générale (voir annexe I).
|
||||
\item l'énoncé d’Einstein fait référence aux lois de la physique en général. En fait, à l'époque de Galilée, c'est des lois de la mécanique qu'il s'agissait. Nous verrons à quel point l’extension faite par Einstein du principe de relativité aux lois de la physique en général, a été cruciale pour la relativité restreinte.
|
||||
\item Enfin, qu’en raison de la présence du principe d'inertie dans le principe de relativité de Galilée, celui-ci est parfois dit \og de Galilée - Newton\fg.
|
||||
\end{itemize}
|
||||
|
||||
On peut maintenant bien comprendre la définition actuelle du principe de relativité de
|
||||
Galilée qui postule l'existence de référentiels d'inertie et établit la relativité :
|
||||
|
||||
\og
|
||||
\begin{itemize}
|
||||
\item Il existe des référentiels particuliers, appelés “référentiels d'inertie”, par rapport auxquels l'espace est homogène et isotrope et le temps est homogène ; en particulier tout corps \og isolé\fg a un mouvement rectiligne uniforme par rapport à un référentiel d'inertie.
|
||||
\item Les forces et les lois fondamentales de la mécanique sont les mêmes pour l’ensemble des observateurs en translation uniforme les uns par rapport aux autres (insistons sur le fait qu’en conséquence de la définition des transformations de Galilée, pour de tels observateurs, le principe d'inertie est valable) : les
|
||||
transformations de Galilée sont des symétries de la mécanique.
|
||||
\end{itemize}
|
||||
\fg\endnote{Voir \cite{I}.}
|
||||
|
||||
Résumons nous pour conclure. Nous avons vu que la notion même de relativité implique la notion de transformations opérant des changements de référentiel. Le principe de
|
||||
relativité de Galilée nous dit qu'il existe une certaine classe de transformations entre référentiels se déplaçant en translation uniforme les uns par rapport aux autres (les transformations de Galilée), opérant des changements de référentiels d'inertie, par rapport auxquelles les lois de la mécanique sont formellement invariantes (voir annexe II). Il s'agit d'une autre symétrie que cclles déjà présentées (symétrie par rotation et par translation).
|
||||
Mais cela ne présuppose pas que celles de la physique en général, celles de l'électrodynamique (inconnue de Galilée) par exemple, le soient aussi. En fait, nous verrons que c'est Einstein qui va amener une telle généralisation.
|
||||
|
||||
\section{L'espace absolu de Newton}
|
||||
Avant de passer à l'analyse proprement dite du concept d'espace chez Newton, il faut faire quelques rappels.
|
||||
|
||||
\subsubsection{Rappels historiques}
|
||||
Newton (1642-1727) élabore un \og calcul des fluxions \fg, fondement du calcul différentiel et intégral (les “fluxions” de Newton ne sont rien d'autre que les \og dérivées \fg{} de Leïbnitz, élaborées à la même époque).
|
||||
|
||||
Il écrit son ouvrage fondement de la mécanique classique : “Principes mathématiques de la philosophie naturelle” en 1687 où il énonce ses fameuses trois lois :
|
||||
\begin{enumerate}
|
||||
\item \textbf{Lex Prima (énoncé de Newton) ou \og loi d'inertie \fg}~:
|
||||
\og Tout corps persévère dans l'état de repos ou de mouvement uniforme en ligne droïte à moins que
|
||||
quelque force n’agisse sur lui et ne le contraigne à changer d'état. \fg
|
||||
|
||||
\textbf{Première loi (énoncé actuel)}~:
|
||||
\og La quantité de mouvement d’un point matériel reste constante au cours de l’évolution si et seulement si la résultante des forces qui agissent sur lui est égale à zéro :
|
||||
\begin{align*}
|
||||
&\overrightarrow{p}(t)=\overrightarrow{p}(t_o)\;\Leftrightarrow\;\sum_\alpha \overrightarrow{F}_\alpha(t)=0\;\;\forall\;t\\
|
||||
\text{avec}&\overrightarrow{p}(t)=m\cdot \overrightarrow{v}(t)\;\;\text{ ; }\overrightarrow{p}\text{ : quantité de mouvement}\;\overrightarrow{v}\text{ : vitesse}
|
||||
\end{align*}\fg
|
||||
|
||||
\item \textbf{Lex Secunda (énoncé de Newton)}~:
|
||||
\og Les changements qui arrivent dans le mouvement sont proportionnels à la force motrice (FAt) et se
|
||||
font dans la ligne droite dans laquelle cette force a été imprimée. \fg
|
||||
|
||||
\textbf{Seconde loi (énoncé actuel)}~:
|
||||
\og A chaque instant, la variation par unité de temps de la quantité de mouvement d’un
|
||||
point matériel est égale à la résultante des forces qui agissent sur lui :
|
||||
\[\frac{d}{dt}\overrightarrow{p}(t)=\overrightarrow{F}(t)\;\;\text{où}\;\;\overrightarrow{F}(t)=\sum_\alpha \overrightarrow{F}_\alpha (t)\]\fg
|
||||
|
||||
\item \textbf{Lex Tertia (énoncé de Newton)}~:
|
||||
\og L'action est toujours égale et opposée à la réaction, c’est-à-dire que les actions de deux corps l’un sur
|
||||
l’autre sont toujours égales et de direction opposées. \fg
|
||||
|
||||
\textbf{Troisième loi (énoncé actuel)}~:
|
||||
\og A tout instant et quelque soit le mouvement du système, le torseur (on appelle torseur
|
||||
un ensemble fini ou infini de vecteurs liés ou glissant, de même dimension, noté
|
||||
\[\tau=\{(P_\alpha,\overrightarrow{\xi}_\alpha)\}\]
|
||||
des forces intérieures est équivalent à zéro :
|
||||
\[\sum_\alpha \overrightarrow{F}_\alpha^{int} = 0\;\;\text{et}\;\;\sum_\alpha \overrightarrow{OP}_\alpha\wedge\overrightarrow{F}_\alpha^{int.} = 0\]\fg
|
||||
\end{enumerate}
|
||||
|
||||
Remarque~: Dans le cas particulier où le système est formé de deux points matériels, nous retrouvons l'énoncé de Newton qui est plus habituellement nommé \og principe de l’action et de la réaction \fg.
|
||||
|
||||
De plus il établit la loi de la gravitation universelle~:
|
||||
\[\overrightarrow{F}_{A\rightarrow B}=-G\cdot\frac{M_A\cdot M_B}{|\overrightarrow{AB}|^3}\cdot \overrightarrow{AB}\]
|
||||
où \(G\) est la constante de la gravitation, \(M_A\) et\(M_B\) sont les masses gravifiques des corps A ct B et \(\overrightarrow{AB}\) est le vecteur liant A à B.
|
||||
|
||||
Remarquons que cette loi n’est pas déduite des trois première lois et qu’elle figure ainsi dans la théorie de Newton au rang d’axiome.
|
||||
|
||||
\bigskip
|
||||
Avant de commencer, répétons-nous encore une fois, tant cela est important.
|
||||
|
||||
\medskip
|
||||
Nous avons précédemment dit que que le principe de relativité de Galilée discriminait,
|
||||
en quelque sorte, les référentiels pour lesquels les lois du mouvement sont identiques. Il nous disait aussi que ce n’est que par rapport à des référentiel d’inertie, que nous devons considérer les lois du mouvement. La loi d'inertie divise donc l’ensemble des référentiels en deux sous-ensembles : les référentiels inertiels \og autorisés\fg{} et ceux qui ne le sont pas. L'exemple suivant met bien en évidence ce problème de l’exigence de la validité de la loi d'inertie~:
|
||||
\begin{quotation}
|
||||
Comme Newton, supposons qu’un corps loin de toute matière soit un système isolé. II n’y a alors aucune action extérieure possible sur ce corps. En particulier, aucune force ne s'exerce sur lui. Si maintenant, par rapport à un référentiel R, son mouvement est rectiligne, il ne peut l'être aussi par rapport à un référentiel R’, en rotation par rapport à R. Et ce, malgré le fait qu'aucune force ne s'exerce sur lui.
|
||||
\end{quotation}
|
||||
|
||||
Pour Newton, le mouvement d’un corps doit être rectiligne s’il ne subit aucune force,
|
||||
car, pour lui, la loi d’inertie est une des lois générales de la nature. Elle doit donc être toujours valable. Le problème de fond est ainsi celui du statut de la première loi. Il existe des référentiels dans lesquels le mouvement d’un corps, sur lequel aucune force n'est exercée, n’est pas une ligne droite. Ces référentiels ne doivent donc pas être utilisés pour décrire correctement le mouvement de ce corps. Aïnsi, pour faire de la première loi une loi universelle, il faut postuler l’existence d’un espace absolu dans lequel elle est valable et ne considérer les lois du mouvement que relativement à un référentiel immobile par rapport à celui-ci. Ainsi Newton écrira~:
|
||||
\begin{quotation}
|
||||
\og Quant à ceux [les termes] de temps, d'espace, de lieu et de mouvement, ils sont connus de tout lo monde ; mais il faut remarquer que pour n'avoir considéré ces quantités que par leurs relations à des choses sensibles, on est tombé dans plusieurs erreurs. Pour les éviter, il faut distinguer le temps, l'espace, le lieu et le mouvement en absolus et relatifs, vrais et apparents, mathématiques et vulgaires \dots
|
||||
|
||||
L'espace absolu, sans relation aux choses externes, demeure toujours similaire et immobile \dots
|
||||
|
||||
L'espace relatif est cette partie ou dimension mobile de l'espace, laquelle tombe sous noa éens par la relation aux corps, et que le vulgaire confond avec l’espace immobile. \fg\endnote{\cite[p. 40]{U}.}
|
||||
\end{quotation}
|
||||
|
||||
Ce n'est que dans l’espace absolu qu'il y a relation entre force et accélération (validité de la seconde loi), ce n'est que par rapport à celui-ci que la force (celle qui est due à l'interaction avec d'autres objets matériels et que Newton nomme force imprimée) est cause de l'accélération~:
|
||||
\begin{quotation}
|
||||
\og Les causes par lesquelles on peut distinguer le mouvement vrai du mouvement relatif sont Isa forces imprimées dans les corps pour leur donner le mouvement : car le mouvement vrai d'un corps re peut être produit ni changé que par les forces imprimées à ce corps même, au liéu que son mouvement relatif peut être produit et changé, sans qu'il éprouve l'action d'aucune force ; il suffit qu'il y ait des forces qui agissent sur les corps par rapport auxquels on le considère, puisque ces corps étant mus, la relation dans laquelle consiste le repos ou le mouvement relatif change.\fg\endnote{Ibid, p. 41.}
|
||||
\end{quotation}
|
||||
|
||||
Ainsi se résout le problème mentionné ci-dessus du système isolé. Ainsi s'explique
|
||||
aussi le terme de \og force d'inertie \fg. En effet, la cause du mouvement inertiel (mouvement de translation uniforme d'un objet sur lequel aucune force imprimée n’agit) ne peut être que l’espace absolu, puisque c’est le seul \og objet\fg{} en présence duquel se trouve le corps matériel. Newton nomme alors cette action de l’espace absolu \og force inertielle (insita) \fg, bien que cette action ne produise pas d’accélération et ne soit donc pas une force. Newton la définit comme \og la force qui réside dans la matière \fg{} et \og par laquelle tout corps persévère de lui-même dans son état actuel de repos ou de mouvement uniforme en ligne droite \fg\endnote{Ibid, p. 41.}.
|
||||
|
||||
\section{Avant la relativité, un débat : l'éther}
|
||||
|
||||
Toute la physique prérelativiste est donc basée sur la notion de référentiel d'inertie et sur le fait que les lois du mouvement, les lois de la mécanique, sont identique dans deux référentiel en translation uniforme l’un par rapport à l’autre.
|
||||
|
||||
À la base des interrogations qui ont amené la création de la relativité restreinte, se
|
||||
trouve le problème de la vitesse de la lumière.
|
||||
|
||||
Rappelons que la lumière est une onde et qu'avant l'avènement de la relativité res-
|
||||
treinte, on pensait que toute onde devait avoir un support matériel. Ainsi, de la même manière que les vagues (des ondes aquatiques) ont pour support les molécules d’eau, ou que les sons (des ondes de pression) ont pour support les molécules d’air, la lumière (des ondes électromagnétiques) devait avoir pour support quelque chose que l’on appelait \og l’éther \fg.
|
||||
|
||||
D'autre part, on savait depuis 1676 avec Olaus Roemer (1644-1710) que la vitesse de la
|
||||
lumière dans le vide est une constante c (\SI{327000}{\kilo\metre\per\second} alors, au lieu de \SI{299792}{\kilo\metre\per\second} aujourd’hui). Roemer compare le mouvement des satellites de Jupiter prévu par la théorie de Newton avec l'observation et constate qu'ils semblent \og avoir tantôt huit minutes d'avance, tantôt huit minutes de retard \dots \fg\endnote{Cité sans référence par F. Balibar dans \cite[p. 96]{B}.}, \og Roemer, faisant confiance à la loi de la gravitation, en arriv[e] à l'intéressante
|
||||
conclusion que la lumière met un certain temps à voyager des lunes de Jupiter à la terre, et que lorsque nous regardons les lunes, nous ne les voyons pas là où elles sont maintenant, mais là où elles étaient il y a un certain temps, celui que met la lumière pour arriver ici \fg\endnote{Ibid, p. 98.} (voir Annexe IV).
|
||||
|
||||
Rapidement des questions relatives à l'éther se sont posées. Il était intéressant
|
||||
notamment de savoir si l’éther était affecté par le mouvement des corps. Trois possibilités se présentaient :
|
||||
\begin{enumerate}
|
||||
\item L’éther est totalement entraîné dans le mouvement des corps.
|
||||
\item Une partie seulement de l’éther est entraîné dans leur mouvement.
|
||||
\item L’éther pénètre les objets, mais n’est pas entraîné par eux.
|
||||
\end{enumerate}
|
||||
|
||||
Dans le premier cas, on ne peut alors détecter le mouvement d’un objet par rapport à
|
||||
l'éther, ce qui en fait une notion plutôt vague. En effet, la vitesse de la lumière étant constante par rapport à l'éther (la vitesse d’une onde est toujours définie par rapport à son support), elle est donc la même, dans l'éther mobile entraîné par la terre, que dans l’éther immobile. Or, l'éther ne se manifeste que dans les propriétés de propagation de la lumière pour lesquelles il a été imaginé. On ne peut done, dans ce cas détecter, le mouvement d’un corps par rapport à l'éther.
|
||||
|
||||
Dans les second et troisième cas, grâce au théorème d'addition des vitesses (voir ci-
|
||||
dessus la transformation de Galilée) on le peut. En effet, supposons que la vitesse de la lumière par rapport à un référentiel K soit c. Selon un référentiel K’ en translation par rapport à K à la vitesse v, la vitesse de la lumière doit avoir, d'après ce théorème, une valeur \(c'\) telle que: \(c'=c\pm v\) différente de c (plus ou moins selon la direction de propagation).
|
||||
|
||||
Plusieurs expériences (\og aberration de la lumière \fg, de Fizeau, de Hæk,
|
||||
\og électrodynamique des corps en mouvement\fg) montrerons qu’en tous les cas l’éther ne doit être que partiellement entraîné. Dans l’expérience de Fizeau, par exemple, il s'agissait de la mesure de la vitesse de la lumière dans un courant d’eau. Selon le principe d’additivité des vitesses ci-dessus, la vitesse de la lumière c' dans un courant d’eau de vitesse v devait être :
|
||||
\[c=c/n\pm v\]
|
||||
où n est l’indice de réfraction de l’eau et donc c/n la vitesse de la lumière dans celle-ci,
|
||||
|
||||
Or, Fizeau n'obtint pas cette formule de composition des vitesses, mais la suivante~:
|
||||
\[c' = c/n \pm (1 - 1/n2)v\]
|
||||
qui s’expliquait par l'entraînement partiel de l’éther (\(0 < 1 - 1/n^2 < 1\)).
|
||||
|
||||
Mais cette expérience (comme celle de l’aberration de la lumière) ne décrivait pas un
|
||||
mouvement absolu par rapport à l’éther, mais celui relatif de l’eau par rapport au référentiel du laboratoire.
|
||||
|
||||
Pour mettre en évidence le mouvement absolu d’un corps par rapport à l’éther, il fallait donc une \og expérience interne\fg\endnote{Ibid, p. 100.}, c’est-à-dire \og que la source et l’observateur participent au mouvement étudié.\fg\endnote{\cite[p. 26]{J}.}. Que l’éther ne soit pas ou ne soit que partiellement entraîné, il devait néanmoins être possible de constater une différence de vitesse de la lumière selon que l’on se
|
||||
propage ou non dans sa direction. Pour ce faire, on utilisa les grandes variations de la vitesse de la terre autour du soleil dans l’expérience décrite ci-dessous~:
|
||||
|
||||
\begin{figure}
|
||||
\centering
|
||||
\input{images/eps/MichelsonMorley.eps_tex}
|
||||
\caption{Expérience de Michelson et Morley}\label{fig:michelsonmorley}
|
||||
\end{figure}
|
||||
|
||||
il s'agit d’une source envoyant un rayon de lumière sur deux miroirs placés à angle droit l’un par rapport à l’autre, comme le montre la figure \ref{fig:michelsonmorley}.
|
||||
|
||||
Si le dispositif est au repos par rapport à l’éther, le temps mis par la lumière pour revenir à la source doit être le même dans les deux bras.
|
||||
|
||||
Si par contre l’ensemble du dispositif est en translation à vitesse constante selon l’axe source-miroir B, on peut montrer\endnote{Ibid.} que les temps mis par la lumière (qui se propage dans l’éther immobile à la vitesse c) pour aller au
|
||||
miroirs A et B doivent être différents.
|
||||
|
||||
L'ensemble de l'expérience doit pouvoir tourner sur elle-même de façon à repérer la direction du mouvement par rapport à l’éther.
|
||||
|
||||
Cette expérience a été réalisée par Michelson et Morley en 1887 (leur dispositif étant
|
||||
cependant quelque peu plus complexe pour des raisons techniques), puis de très nombreuses fois par la suite.
|
||||
|
||||
Or, pour quelque vitesse de la terre sur son orbite autour du soleil que ce fut, en
|
||||
quelque endroit sur terre que ce fut (en particulier, si l'éther n'avait du être que partiellement entraîné, la vitesse de la lumière auraît du être fonction de l'altitude), jamaïs on n’observa une différence dans les temps \og de vol\fg des rayons lumineux.
|
||||
|
||||
Pour interpréter ce fait et conserver la notion d’éther, Fitzgerald et Lorentz ont, indépendamment, émis l'hypothèse en 1893 qu'il se produisait une contraction du bras parallèle au déplacement. Lorentz alla jusqu'à faire intervenir une dilatation du temps, à établir une localité des coordonnées d'espace et de temps des référentiel galiléens (un système de coordonnées spécifique attaché à chacun de ceux-ci) et à proposer une transformation de référentiel d'inertie qui tienne compte de ces faits. Ce fut la transformation de Lorentz sur laquelle, on va le voir, Einstein construisit sa relativité restreinte.
|
||||
|
||||
\section{L'espace relatif d'Einstein, la théorie de la relativité restreintes}
|
||||
Les considérations précédentes, antérieures à la relativité, montrent que l’idée était
|
||||
\og dans l'air\fg, les bonnes questions étant posées. Quelle fut la clé qui permit d'expliquer les faits observés avec simplicité et sans hypothèses ad hoc et de résoudre adéquatement les contradictions ? C’est ce que nous allons voir maintenant en entrant de plein pied dans les fondements conceptuels de la théorie de la relativité restreinte d'Einstein.
|
||||
|
||||
Rappelons encore une fois le contenu essentiel du principe de relativité restreinte de
|
||||
Galilée. Il tient en deux points~:
|
||||
\begin{itemize}
|
||||
\item \og Il existe une équivalence de tous les systèmes d'inertie (en mouvement rectiligne et uniforme à partir de l'un d’entre eux), pour la description des lois du mouvement. \fg\endnote{\cite[p. 23]{K}.}
|
||||
\item La relation entre ces systèmes d'inertie est la transformation de Galilée. Il en
|
||||
résulte la règle classique de composition des vitesses qui permet d'établir que la vitesse de la lumière est différente dans deux systèmes galiléens distincts.
|
||||
\end{itemize}
|
||||
|
||||
Or, ainsi que nous l’avons vu, il n’est pas possible de mettre en évidence expérimentalement cette différence. Le second point du principe de Galilée doit donc être modifié. Einstein le remplace par :
|
||||
\begin{itemize}
|
||||
\item \og Dans le vide, la lumière se propage de façon isotrope. Sa vitesse est une constante universelle c.\fg\endnote{Ibid.}
|
||||
\end{itemize}
|
||||
|
||||
Il faut bien comprendre que cette substitution implique l’abandon de la transformation
|
||||
de Galilée et qu’il est nécessaire alors d’en trouver une autre qui soit en relation réciproque avec la nouvelle proposition. D'autre part, cette substitution est fondamentale, car elle va avoir deux effets essentiels~:
|
||||
\begin{enumerate}
|
||||
\item Elle va permettre de rendre les équations de l’électrodynamique (théorie de
|
||||
la dynamique des phénomènes électromagnétiques) invariantes (on dit aussi covariantes) par la nouvelle transformation. Ce qu’elles n'étaient pas par transformation de Galilée.
|
||||
\item Elle va entraîner une relativisation de certains notions fermement établies
|
||||
de la mécanique newtonienne et une modification de ses axiomes et théorèmes.
|
||||
\end{enumerate}
|
||||
|
||||
La nouvelle transformation est alors le résultat direct des deux postulats. On la déduit de l'expression mathématique de la constance de la vitesse de la lumière posée comme identique dans deux référentiels d'inertie.
|
||||
|
||||
Mais, Einstein va plus loin. On va voir qu’il ramène celle-ci à la reconnaissance du
|
||||
caractère relatif de l’espace et du temps, tirée d’une analyse très claire et précise de la notion de simultanéité. C'est pourquoi, il renverse la déduction mathématique de la transformation à partir des deux principes de la relativité, pour considérer la simultanéité comme première et en tirer l’invariance de la vitesse de la lumière~:
|
||||
\begin{quotation}
|
||||
\og Ne pouvons nous pas supposer des changemonts tels dans le rythme do l'horloge en mouvement et dans la longueur de la barre en mouvement que la constance de la vitesse de la lumière suivra directement ces suppositions ? En effet, nous le pouvons.\fg\endnote{\cite[pp. 33-35]{L}.}
|
||||
\end{quotation}
|
||||
|
||||
\subsection{La notion de simultanéité}
|
||||
|
||||
À l'origine de la relativité se trouve donc la simultanéité. La simultanéité de deux événements voisins ne pose pas de problèmes. C'est donc celle de deux événements éloignés qu'il faut examiner. Pour comprendre ses propriétés, Einstein commence par en donner une définition opératoire~:
|
||||
\begin{quotation}
|
||||
\og On mesure la droite AB [entre les deux événements] \dots et l’on place au milieu de cette droite M un observateur muni d'un appareil (par exemple deux miroirs inclinés à \SI{90}{\degree}) qui lui permet d'observer simultanément les deux points A et B. S'il aperçoit les [événements] en même temps, ils sont simultanés.\fg\endnote{\cite[p. 155]{M}.}
|
||||
\end{quotation}
|
||||
|
||||
Cette définition est conventionnelle. Elle permet de donner un sens exact à la simultanéité de deux événements sans impliquer le nouveau postulat : l'hypothèse de la constance de la lumière. En effet, elle définit une simultanéité où il n’est pas exigé que la lumière se propage avec la même vitesse de A à M que de B à M. Exiger cela nécessiteraït de pouvoir le vérifier et donc de disposer d’un moyen de déterminer un temps absolu\endnote{Ibid.} (je passe rapidement sur ce point qui n’est pas fondamental. Einstein lui-même n’a pas toujours défini la simultanéité indépendamment du postulat de la constance de la vitesse de la lumière\endnote{\cite[p. 175]{N}.}). À partir
|
||||
de cette définition de la simultanéité, Einstein montre que celle-ci est relative au référentiel utilisé. La démonstration d'Einstein est si simple et lumineuse qu’il serait malvenu ici de ne pas la reproduire tel quel~:
|
||||
\begin{quotation}
|
||||
\og Supposons un train très long se déplaçant sur [une voie ferrée] avec une vitesse constante v dans la direction indiquée sur la figure \ref{fig:simultaneitetrain}.
|
||||
|
||||
\begin{figure}[h]
|
||||
\centering
|
||||
\input{images/eps/simultaneitetrain.eps_tex}
|
||||
\caption{La notion de simultanéité}\label{fig:simultaneitetrain}
|
||||
\end{figure}
|
||||
|
||||
Les voyageurs de ce train auront avantage [à] se servir du train comme corps de référence rigide (système de coordonnées), auquel ils rapporterons tous les événements.Tout événement qui a lieu le long de la voie ferrée a aussi lieu en un point déterminé du train. La définition de la simultansité peut aussi être formulée exactement de la même façon par rapport au train que par rapport à la voie. La question suivante se pose ainsi tout naturellement~:
|
||||
|
||||
Deux événements (par exemple les deux éclairs A et B), qui sont simultanés \emph{par rapport à le voie}, sont-ils aussi simultanés \emph{par rapport au train} ? Nous montrerons tout à l'heure que la réponse doit être négative.
|
||||
|
||||
Quand nous disons que les éclairs A et B sont simultanés par rapport à la voie ferrée nous entendons par là que les rayons issus des points A et B se rencontrent au milieu M de la distance A-B située sur la voie. Mais aux événements A et B correspondent des endroits A[‘] et B['] dans le train. Soit M le milieu de la droite A[']-B['] du train en marche. Ce point M' coïncide bien avec le point M à l'instant où se produisent les éclairs (vus du talus), mais il se déplace sur le dessin vers la droite avec la vitesse v. Si un observateur dans le train assis en M n'était pas entrainé avec cette vitesse, il resterait d'une façon permanente en M et les rayons lumineux issus de A et de B l’atteindraient simultanément, c'est-à-dire que ces deux rayons se rencontreraient au point où il se trouve. Mais en réalité il court (vu du talus) vers
|
||||
le rayons de lumière venant de B, tandis qu'il fuit devant celui qui vient de A. Il verra, par conséquent, le rayon de lumière qui vient de B plus tôt que celui qui vient de A. Les observateurs qui se servent du train comme corps de référence doivent donc arriver à la conclusion que l'éclair B s'est produit antérieurement à l'éclair A. Nous aboutissons ainsi au résultat important suivant~:
|
||||
|
||||
Des événements qui sont simultanés par rapport à la voie ferrée ne sont pas simultanés par rapport au train et inversément (relatitité de la simultanéité). Chaque corps de référence (système de coordonnées) a son temps propre : une indication de temps n'a de sens que si l'on indique le corps de référence auquel elle se rapporte\fg\endnote{\cite[p. 31]{G}.}
|
||||
\end{quotation}
|
||||
|
||||
Relativité de ln simultanéité donc, impliquant la relativité du temps. Mais aussi, ja relativité des distances. En effet, la vitesse de la lumière est indépendante du référentiel. Le temps, lui, ne l'est pas. Ainsi, on peut dire en substance que la distance, comme produit de la vitesse de la lumière par le temps, ne peut être que relative (être précis ici serait trop long sans avoir recours à la transformation de Lorentz ci dessous).
|
||||
|
||||
On pourrait à ce stade, comme le dit Einstein, postuler \og des changements tels dans le rythme de l'horloge en mouvement et dans la longueur de la barre en mouvement que la constance de la vitesse de la lumière suivra directement ces suppositions\fg. Ces changements et la constance de la vitesse de la lumière étant en relation réciproque, c'est l'inverse que l'on fait en pratique : on postule l'invariance de la vitesce de la lumière et on en tire une transformation de référentiel qui implique la relativité du temps et des longueurs. Einstein dans \og La relativité\fg\endnote{\cite[p. 156]{M}.} donne une dérivation simple de la transformation de Lorentz. Nous nous contenterons ici du résultat.
|
||||
|
||||
\subsubsection{Transformation de Lorentz}
|
||||
|
||||
Les hypothèses de départ sont les mêmes que celles de la transformation de Galilée donnée par l'éqation \ref{eq:transgalilee}, page \pageref{eq:transgalilee}. La
|
||||
transformation explicite est la suivante~:
|
||||
|
||||
\begin{align}\label{eq:translorentz}
|
||||
x'&=\frac{x-v\cdot t}{\sqrt{1-v^2/c^2}}\nonumber\\
|
||||
y'&=y\nonumber\\
|
||||
z'&=z\nonumber\\
|
||||
t'&=\frac{t-v\cdot x/c^2}{\sqrt{1-v^2/c^2}}
|
||||
\end{align}
|
||||
|
||||
ou, sous forme matricielle~:
|
||||
|
||||
\begin{equation*}
|
||||
\begin{pmatrix}
|
||||
x'\\
|
||||
y'\\
|
||||
z'\\
|
||||
t'
|
||||
\end{pmatrix}=
|
||||
\begin{pmatrix}
|
||||
\frac{1}{\sqrt{1-v^2/c^2}}&0&0&\frac{-v}{\sqrt{1-v^2/c^2}}\\
|
||||
0&1&0&0\\
|
||||
0&0&1&0\\
|
||||
\frac{-v/c^2}{\sqrt{1-v^2/c^2}}&0&0&\frac{1}{\sqrt{1-v^2/c^2}}
|
||||
\end{pmatrix}\cdot
|
||||
\begin{pmatrix}
|
||||
x\\
|
||||
y\\
|
||||
z\\
|
||||
t
|
||||
\end{pmatrix}
|
||||
\end{equation*}
|
||||
|
||||
Remarquons trois choses :
|
||||
\begin{itemize}
|
||||
\item si vest petit par rapport à la vitesse de la lumière c, les termes \(v^2/c^2\) sont proches de zéro et on retrouve la transformation de Galilée. La transformation de Lorentz est donc une généralisation de la transformation de Galilée à des vitesses proches de celle de la lumière,
|
||||
\item en appliquant cette transformation, on peut voir facilement que l'équation de propagation de la lumière selon l’axe x : \(x=c\cdot t\) est formellement invariante,
|
||||
c'est-à-dire s'écrit comme : \(x'= c\cdot t\)~;
|
||||
\item il suit de la transformation de Lorentz une nouvelle loi d’addition des vitesses~:
|
||||
\begin{equation}\label{eq:transvitlorentz}
|
||||
v'=\frac{v+v_{ref.}}{1+v\cdot v_{ref.}/c^2}
|
||||
\end{equation}
|
||||
avec les mêmes notations que pour la transformation de Galilée. Cette équation est à comparer avec l'équation \ref{eq:transvitgalilee}, page \pageref{eq:transvitgalilee}.
|
||||
\end{itemize}
|
||||
|
||||
\medskip
|
||||
À partir de la transformation de Lorentz, on peut facilement montrer la contraction
|
||||
des longueurs et la dilatation du temps dans des référentiels galiléens (la transformation de Lorentz est une transformation qui relie des référentiels galiléens, c’est-à-dire des référentiels en translation uniforme les uns par rapport aux autres) inertiels.
|
||||
|
||||
\subsection{La contraction des longueurs}
|
||||
Une règle d’une longueur L de un mètre est une règle dont l’origine correspond à la position \(x_{origine}=0\) et dont l’extrémité correspond à \(x_{extrémite}=1\) dans le référentiel, mettons R, dans lequel on la mesure (la règle est au repos dans celui-ci). Sa longueur dans un référentiel R’ en translation uniforme v (selon l’axe x) par rapport à R est calculée, au temps \(t_1'\), comme suit~:
|
||||
|
||||
on a~:
|
||||
\begin{align*}
|
||||
x_{o,e}&=\frac{x_{o,e}-v\cdot t_1}{\sqrt{1-v^2/c^2}}\\
|
||||
t_1'=\frac{t_1-v\cdot x_{o,e}/c^2}{\sqrt{1-v^2/c^2}}\;&\Rightarrow\;t_1=t_1'\cdot \sqrt{1-v^2/c^2}+\frac{v\cdot x_{o,e}}{c^2}
|
||||
\end{align*}
|
||||
|
||||
et donc~:
|
||||
\begin{align*}
|
||||
L'&= x'_{extrémité}-x'_{origine}\\
|
||||
&=\frac{x_e-v\cdot t_1}{1-v^2/c^2}-\frac{x_o-v\cdot t_1}{1-v^2/c^2}\\
|
||||
&=\frac{x_e-v\cdot [t_1'\cdot \sqrt{1-v^2/c^2}+v\cdot x_e/c^2]}{1-v^2/c^2}-\frac{x_o-v\cdot [t_1'\cdot \sqrt{1-v^2/c^2}+v\cdot x_o/c^2]}{1-v^2/c^2}\\
|
||||
&=\frac{x_e\cdot (1-v^2/c^2)-v\cdot t_1'\cdot \sqrt{1-v^2/c^2}}{\sqrt{1-v^2/c^2}}-\frac{x_o\cdot (1-v^2/c^2)-v\cdot t_1'\cdot \sqrt{1-v^2/c^2}}{\sqrt{1-v^2/c^2}}\\
|
||||
&=(x_e-x_o)\cdot \frac{1-v^2/c^2}{\sqrt{1-v^2/c^2}}=L\cdot \frac{1-v^2/c^2}{\sqrt{1-v^2/c^2}}=1\cdot \frac{1-v^2/c^2}{\sqrt{1-v^2/c^2}}\\
|
||||
&=\sqrt{1-v^2/c^2}
|
||||
\end{align*}
|
||||
|
||||
Donc \(L'=\sqrt{1-v^2/c^2}\) ou, plus généralement :
|
||||
\begin{equation}\label{eq:contrlong}
|
||||
L’=L\cdot \sqrt{1-v^2/c^2}
|
||||
\end{equation}
|
||||
|
||||
Remarquons que~:
|
||||
\begin{itemize}
|
||||
\item Le terme \(\sqrt{1-v^2/c^2}\) est inférieur à un. Il y a donc contraction des longueurs.
|
||||
\item Il vaut 1 pour \(v=0\). Les longueurs donc sont les mêmes si les référentiels sont au repos l'un par rapport à l’autre.
|
||||
\item Il vaut 0 pour \(v=c\). À la vitesse de la lumière, la longueur L' de la règle (dans le référentiel se déplaçant à la vitesse de la lumière) est donc nulle. La vitesse de la lumière est une vitesse limite.
|
||||
\item On parle quelquefois de longueur propre pour la longueur L de la règle au repos dans le référentiel R.
|
||||
\end{itemize}
|
||||
|
||||
Einstein effectue, dans \og La relativité\fg\endnote{\cite[pp. 24-25]{O}.}, la transformation inverse en cherchant la longueur dans le référentiel R d’une règle au repos dans le référentiel R'. Il obtient :
|
||||
\[L=\sqrt{1-v^2/c^2}\]
|
||||
|
||||
ce qui signifie qu'il y a aussi contraction. En fait, il y a contraction pour tout objet en mouvement par rapport au référentiel à partir duquel on considère ce mouvement. Cette contraction est donc \og réciproque\fg\endnote{Ibid, pp. 34-36.}, c’est-à-dire, à lieu tant pour un observateur dans R que dans R’. Cette contraction est donc différente de celle de Fitzgerald-Lorentz qui avait lieu pour tout objet en mouvement par rapport à l’éther. En effet, plaçcons nous dans un référentiel (appelons-le R') auquel est attaché une règle. Quand celui-ci est au repos par rapport à l'éther, la règle a une certaine longueur, mettons L. Avec Fitzgerald et Lorentz, quand R’ est en mouvement (toujours par rapport à l’éther) la règle se contracte et sa longueur devient inférieure à L. Avec Einstein, ce n’est que vu depuis un autre référentiel (on peut choisir ici l’éther, par exemple) que la règle est plus courte. \og Il s’agit d'un effet apparent (mais non illusoire) purement observationnel\fg\endnote{\cite[p. 135, appendice 1]{G}.}.
|
||||
|
||||
\subsection{La dilatation du temps}
|
||||
Reprenons l’exemple d'Einstein dans \og La relativité\fg\endnote{\cite[p. 45]{G}.}. Soit une horloge à l’origine \(x=0\) de R’ (en translation uniforme v par rapport à R) et soit \(t’=0\) et \(t'=1\) deux battements successifs de celle-ci. On a~:
|
||||
\[x'=0=\frac{x-v\cdot t}{\sqrt{1-v^2/c^2}}\;\Rightarrow\;x=v\cdot t\]
|
||||
|
||||
D'où, pour chaque battement~:
|
||||
\begin{align*}
|
||||
t'=0&=\frac{t-v\cdot x/c^2}{\sqrt{1-v^2/c^2}}=\frac{t-v^2\cdot t/c^2}{\sqrt{1-v^2/c^2}}\\
|
||||
&=t\cdot \frac{1-v^2/c^2}{\sqrt{1-v^2/c^2}}\;\Rightarrow\;t=0\\
|
||||
t’=1&=t\cdot \frac{1-v^2/c^2}{\sqrt{1-v^2/c^2}}=t\cdot \sqrt{1-v^2/c^2}\;\Rightarrow\\
|
||||
t&=\frac{1}{\sqrt{1-v^2/c^2}}
|
||||
\end{align*}
|
||||
|
||||
L'intervalle de temps dans le référentiel R est donc de \(1/\sqrt{1-v^2/c^2}\) qui est légèrement plus long que dans R' (où il vaut 1). On a donc une dilatation du temps.
|
||||
|
||||
Comme pour les distances, la dilatation se produit aussi dans l'autre sens.
|
||||
|
||||
On parle de temps propre \(\Delta\tau\) pour désigner le temps de l'horloge au repos dans le référentiel R'. La relation liant l'intervalle de temps \(\Delta r\), mesuré dans R, de l'horloge au repos dans R', à l'intervalle de temps propre directement mesuré dans R' est alors~:
|
||||
\begin{equation}
|
||||
\Delta t=\frac{\Delta \tau}{1-v^2/c^2}
|
||||
\end{equation}
|
||||
|
||||
Il faut insister sur le fait que le retard des horloges n'est pas dû à une quelconque influence \og mécanique \fg{} du mouvement. Le principe de relativité nous garantissant l'identité des lois dans R et R', les horloges ont strictement le même fonctionnement. La différence de temps vient de la définition même de l'intervalle de temps, et non de la mécanique des horloges.
|
||||
|
||||
\subsection{L'espace-temps}
|
||||
En mécanique classique, l'intervulle de distance \(dx^2\) (un \(\Delta x\) rendu infiniment petit et construit à partir du théorème de Pythagore en géométrie euclidienne par : \(\Delta x^2=(x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2\)) et, indépendamment, celui du temps \(dt^2\) (\(\Delta t^2=(t_2-t_1)^2\)), sont préservés par une transformation de Galliée. On dit que \(dx^2\) et \(dt^2\) sont deux invariants de la transformation de Galilée.
|
||||
|
||||
Dans la transformation de Lorentz, la coordonnée de temps est liée aux coordonnées d'espace. Il s'en suit que ni l'intervalle de temps, ni celui de distance n’est préservé par une transformation de Lorentz. Les éléments infinitésimaux \(dx^2\) et \(dt^2\) ne sont donc pas des invariants de celle-ci.
|
||||
|
||||
On peut montrer\endnote{\cite[pp. 44-45]{K} ou \cite[p. 157]{M}.} que la quantité~:
|
||||
\begin{equation}\label{eq:ds2}
|
||||
ds^2 = -c^2\cdot dt^2 + (dx^2 + dy^2 + dz^2)
|
||||
\end{equation}
|
||||
|
||||
est bien, elle, un invariant de Lorentz. On l'appelle intervalle d’espace-temps, puisque s’y trouvent réunies les coordonnées d'espace et de temps. Son invariance fonde la nécessité de ne plus considérer le temps indépendamment de l'espace puisque \og l'espace est différent pour tous les observateurs [:] le tomps également [:] mais l'espace-temps est le même pour tous \fg\endnote{\cite[p. 44]{K}.}
|
||||
|
||||
L'intervalle d’espace-temps peut être positif, nul ou négatif. À chaqu'un de ces cas correspond une partie bien distincte de l'espace-temps. Pour la représenter, considérons une onde lumineuse dans un plan bidimengionnel issue d’un point P. Celle-ci va se propager dans toutes les directions du plan de façon circulaire. Si on reporte en troisième coordonnées le temps, on obtiendra un cône. C’est la représentation dite \og diagramme d'espace-temps\fg{} (voir la figure \ref{fig:conedelumiere}).
|
||||
\begin{itemize}
|
||||
\item L'intérieur du cône (passé ou futur) est le domaine de représentation des trajectoires des corps massiques, ne pouvant atteindre la vitesse de la lumière, leur tracé ne peut être sur la nappe du cône.
|
||||
|
||||
L'intérieur du cône est aussi un domaine où existe la possibilité de relalions causales. En effet, il est en principe possible d'atteindre un événernent dans le futur, puisque il faut pour cela une vitesse inférieure (à la limite égale) à celle de la lumière.
|
||||
\item L'extérieur du cône ne peut être, lui, causalement atteint puisqu'il faudrait pour cela une vitesse supérieure à celle de la lumière. Contrairement aux événements situés à l'intérieur du cône, deux événements de l’ailleurs sont antérieurs, simultanés ou postérieurs l’un de l’autre en fonction du référentiel dans lequel on les considère.
|
||||
|
||||
Par exemple, la Terre le 22 février 1993 à 15 heure et le Soleil à la même date
|
||||
et à la même heure seront dans l’ailleurs l’un de l’autre. L'explosion du Soleil à cette heure précise n'aura, à 15 heure, aucun effet sur la Terre. Ce n'est que quelques minutes plus tard, le temps que sa lumière ne nous parvienne plus, que nous devrons allumer nos radiateurs.
|
||||
|
||||
\begin{figure}[h]
|
||||
\centering
|
||||
\input{images/eps/conedelumiere.eps_tex}
|
||||
\caption{Cône de lumière}\label{fig:conedelumiere}
|
||||
\end{figure}
|
||||
|
||||
\end{itemize}
|
||||
|
||||
\subsection{Géométries et espaces}
|
||||
La modification des relations entre le temps et l’espace, introduite par la transformation de Lorentz, implique donc une vision étendue de l’espace tridimensionnel de la physique newtonienne. Des positions de ce dernier, on passe à des événements (un événement est non seulement délimité dans l’espace mais aussi dans le temps) localisés dans un espace quadridimensionnel.
|
||||
|
||||
Pour bien comprendre ce que la relativité générale va apporter de nouveau, il faut décrire rapidement les différentes structures d'espace que les mathématiques mettent à disposition de la physique. Le tableau \ref{tab:geoesp} les présente sous une forme résumée.
|
||||
|
||||
\begin{table}
|
||||
\caption{Géométries et espaces}\label{tab:geoesp}
|
||||
\medskip
|
||||
\begin{tabularx}{\textwidth}{@{\extracolsep{\fill}}p{0.3\textwidth}Xp{0.3\textwidth}}
|
||||
Les événements physiques localisés dans l'espace et le temps forment un ensemble. ce sont les points d'un & \centering\(\longmapsto\) & Espace-temps\\
|
||||
&\centering \(\downarrow\)&\\
|
||||
Chaque point a un voisinage d'événements possibles & \centering\(\longmapsto\)\newline structure topologique & Espace topologique\\
|
||||
&\centering \(\downarrow\)&\\
|
||||
On peut référer les événements à l'aide de 4-coordonnées sur des cartes & \centering\(\longmapsto\)\newline structure de variété & Variété de dim. 4\\
|
||||
&\centering \(\downarrow\)&\\
|
||||
Il existe des champs de vecteurs, satisfaisant des équations différentielles & \centering\(\longmapsto\)\newline structure différentiable & Variété continue r fois différentiable, \(r\geq 3\)\\
|
||||
&\centering \(\downarrow\)&\\
|
||||
Il existe une notion de parallèlisme de deux vecteurs & \centering\(\longmapsto\)\newline structure affine (connection) & Variété affine\\
|
||||
&\centering \(\downarrow\)&\\
|
||||
On peut mesurer l'éloignement de deux événements. Il existe une flèche du temps et la vitesse de la lumière est finie & \centering\(\longmapsto\)\newline structure métrique & Espace de Riemann (métrique quelconque) Espace de Minkowski (métrique pseudo-rimannienne)
|
||||
\end{tabularx}
|
||||
\end{table}
|
||||
|
||||
\bigskip
|
||||
L'espace de la relativité restreinte est un espace de Minkowsky. En particulier, on peut donc mesurer l'éloignement entre deux événements. Comment ? Nous l'avons vu, grâce à l'intervalle d’espace-temps :
|
||||
|
||||
\[ds^2=-c^2\cdot dt^2+(dx^2+dy^2+dz^2)\]
|
||||
|
||||
De quoi s'agit-il exactement ?
|
||||
|
||||
Pour mesurer une distance, du point de vue mathématique, on utilise la notion de
|
||||
norme. On sait depuis le lycée (du moins peut-on se le rappeler) que la norme d’un vecteur est donnée par :
|
||||
|
||||
\[\Vert\overrightarrow{a}\Vert^2 =\overrightarrow{a}\cdot \overrightarrow{a}\]
|
||||
|
||||
Si on remplace le vecteur ci-dessus par le quadrivecteur \[\overrightarrow{ds} =(i\cdot c\cdot dt, dx, dy, dz)\] où \(i = \sqrt{-1}\), on peut effectuer le produit scalaire comme on en a l'habitude, pour obtenir précisément l'intervalle d'espace temps. On reconnait donc maintenant dans la seconde partie du
|
||||
\(ds^2\) le produit scalaire d’un petit vecteur de composantes \((dx, dy, dz)\).
|
||||
|
||||
Or, la manière d’effectuer le produit scalaire (c'est-à-dire \(dx^2 + dy^2 + dz^2\) et non \(dx^2 + 8.dy^2 + dx.dz\), par exemple) est caractéristique de la géométrie euclidienne. En posant \(dw = ic\cdot dt\) on obtient un élément de longueur \(ds^2\) formellement identique à celui qui vaut en
|
||||
géométrie euclidienne tridimensionnelle : \(ds^2 = dw^2 + dx^2 + dy^2 + dz^2\). C’est pourquoi l’espace de la relativité restreinte est euclidien (on dit parfois pseudoeuclidien car la norme, le \(ds^2\), peut devenir négatif) tout en étant quadridimensionnel.
|
||||
|
||||
Pour comparaison, l'expression de l'élément de longueur d’un espace bidimensionnel sphérique est: \(ds^2=R^2\cdot (\sin^2(a)\cdot d\varphi^2 +d\alpha^2)\) où \(\alpha\) et \(\varphi\) sont les paramètres permettant de
|
||||
repérer les points sur une sphère de rayon R. Il s’agit de la norme du vecteur \(\overrightarrow{ds} = (dp,da)\) effectuée à l’aide d’une \og multiplication\fg{} (le · ci-dessus) propre à un espace sphérique~:
|
||||
|
||||
\[\Vert\overrightarrow{ds}\Vert^2=\overrightarrow{ds}\cdot
|
||||
\begin{pmatrix}
|
||||
\sin^2(\alpha)&0\\
|
||||
0&1
|
||||
\end{pmatrix}\cdot\overrightarrow{ds}\;\;\text{ou}\;\;ds^2=\sum_{\mu,\nu}g_{\mu\nu}\cdot dx^\mu\cdot dx^\nu\]
|
||||
|
||||
Le point trouve ici une expression plus générale sous la forme d’une matrice caractéristique que l'on représente par le symbole \(g_{uy}\).
|
||||
|
||||
\section{La théorie de la relativité générale}
|
||||
Comme nous l'avons donc vu précédemment, tant la relativité de Galilée que celle
|
||||
d'Einstein est restreinte à la considération des lois de la physique à partir de référentiels privilégiés qui sont inertiels (ou, du moins, décrétés comme tels).
|
||||
|
||||
D'autre part, les réflexions d'Einstein sur la simultanéité ont permis d'expliquer beaucoup de résultats que le recours à l’éther n'avaient pu rendre compréhensibles. Ce dernier devint alors caduc, en même temps que la notion d'espace absolu.
|
||||
|
||||
\smallskip
|
||||
Or, un certain nombre de phénomènes relatifs à des systèmes accélérés, et donc non inertiels, menaçaient de faire revenir l'absolu écarté par la relativité restreinte. Ils sont caractéristiques des propriétés particulières des référentiels non inertiels, propriétés qui sont à l'origine de la non invariance formelle des lois entre les référentiels inertiels et ceux qui ne le
|
||||
sont pas. Voyons les deux plus célèbres des expériences qui révèlent ces phénomènes.
|
||||
|
||||
\subsection{Le pendule de Foucault}
|
||||
|
||||
\newpage
|
||||
\begin{thebibliography}{99}
|
||||
\bibitem{A}
|
||||
Galilée,
|
||||
\emph{Dialogue concernant les deux plus grands systèmes du monde}.
|
||||
1632.
|
||||
\bibitem{B}
|
||||
Balibar F.,
|
||||
\emph{Galilée, Newton lus par Einstein}.
|
||||
PUF 3ème éd. 1990.
|
||||
\bibitem{C}
|
||||
Einstein A.,
|
||||
\emph{Einstein, Conceptions scientifiques}.
|
||||
Champ Flammarion 1920.
|
||||
\bibitem{D}
|
||||
Collectif,
|
||||
\emph{La symétrie aujourd’hui}.
|
||||
coll. Point, éd. Seuil 1989.
|
||||
\bibitem{E}
|
||||
Cohen-Tannoudji G. et Spiro M.,
|
||||
\emph{La matière-espace-temps}.
|
||||
folio essais, Fayard 1986.
|
||||
\bibitem{F}
|
||||
Einstein A.,
|
||||
\emph{Sur l’électrodynamique de corps en mouvement}.
|
||||
Analen der Physik.. 1905.
|
||||
\bibitem{G}
|
||||
Einstein A.,
|
||||
\emph{La relativité}.
|
||||
Petite bibliothèque Payot 1956.
|
||||
\bibitem{H}
|
||||
Koyré A.,
|
||||
\emph{Galilée et la loi d'inertie, Etudes galiléennes II}.
|
||||
Histoire de la pensée No 854, Hermann 1939.
|
||||
\bibitem{I}
|
||||
Gruber C.,
|
||||
\emph{Cours de mécanique}.
|
||||
Ecole Polytechnique Fédérale de Lausanne.
|
||||
\bibitem{J}
|
||||
Feynman R.,
|
||||
\emph{La nature de la physique}.
|
||||
R. Feynman, Point Sciences, éd. du Seuil 1980.
|
||||
\bibitem{K}
|
||||
Mavridès S.,
|
||||
\emph{La relativité}.
|
||||
Que sais-je, PUF 1988.
|
||||
\bibitem{L}
|
||||
SmithJ. H.,
|
||||
\emph{Introduction à la relativité}.
|
||||
éd. dirigée par J. M. Levy-Leblond, \oe InterEditions, Paris 1979.
|
||||
\bibitem{M}
|
||||
Tonnelat M.-A.,
|
||||
\emph{La relativité}.
|
||||
M.-A. Tonnelat, dans \og La science contemporaine, II, Le XXe siècle\fg Histoire générale des sciences, PUF 1964.
|
||||
\bibitem{N}
|
||||
Einstein A. et Infeld L.,
|
||||
\emph{L'évolution des idées en physique}.
|
||||
Champs Flammarion 1933.
|
||||
\bibitem{O}
|
||||
Einstein A.,
|
||||
\emph{Quatre conférence sur la théorie de Ia relativité}.
|
||||
Gauthier-Villars 1971.
|
||||
\bibitem{P}
|
||||
Hawking S.,
|
||||
\emph{Une brève histoire du temps}.
|
||||
Flammarion 1989.
|
||||
\bibitem{Q}
|
||||
Tonnelat M.A.,
|
||||
\emph{Histoire du principe de relativité}.
|
||||
Flammarion 1971.
|
||||
\bibitem{R}
|
||||
Misner C. W., Thorne K. S. et Wheeler J. A.,
|
||||
\emph{Gravitation}.
|
||||
W. H. Freeman and Company, San Francisco 1973.
|
||||
\bibitem{S}
|
||||
Brisson L., Meyerstein F. W.,
|
||||
\emph{Inventer l'Univers}.
|
||||
Les Belles Lettres, Paris 1991.
|
||||
\bibitem{T}
|
||||
Einstein A.,
|
||||
\emph{Albert Einstein, Science, Ethique, Philosophie}.
|
||||
Seuil, 1991.
|
||||
\bibitem{U}
|
||||
M.-F. Biarnais,
|
||||
\emph{?},
|
||||
?.
|
||||
\end{thebibliography}
|
||||
|
||||
\newpage
|
||||
\theendnotes
|
||||
\newpage
|
||||
|
||||
\section{Annexes}
|
||||
\appendix
|
||||
|
||||
|
||||
\section{Annexe 1}
|
||||
|
||||
|
||||
\section{Annexe 2}\label{annexe2}
|
||||
|
||||
|
||||
\end{document}
|
|
@ -0,0 +1,11 @@
|
|||
# TP_latex
|
||||
|
||||
Un modèle en latex pour faire des rapports de physique. Ce modèle est auto-descriptif : en le lisant, vous apprendrez à le faire
|
||||
fonctionner. Il présente l'utilisation de tout ce qui est nécessaire pour faire un rapport de physique. En particulier :
|
||||
- une structure de rapport de physique
|
||||
- des équations
|
||||
- des tableaux côte à côte
|
||||
- des schémas avec du texte LaTeX
|
||||
- des graphes avec GnuPlot
|
||||
|
||||
Il est utilisé au lycée comme introduction à LaTeX.
|
|
@ -0,0 +1,429 @@
|
|||
%!PS-Adobe-3.0 EPSF-3.0
|
||||
%%Creator: cairo 1.12.2 (http://cairographics.org)
|
||||
%%CreationDate: Mon Nov 5 10:08:01 2012
|
||||
%%Pages: 1
|
||||
%%DocumentData: Clean7Bit
|
||||
%%LanguageLevel: 2
|
||||
%%BoundingBox: 0 -1 449 294
|
||||
%%EndComments
|
||||
%%BeginProlog
|
||||
save
|
||||
50 dict begin
|
||||
/q { gsave } bind def
|
||||
/Q { grestore } bind def
|
||||
/cm { 6 array astore concat } bind def
|
||||
/w { setlinewidth } bind def
|
||||
/J { setlinecap } bind def
|
||||
/j { setlinejoin } bind def
|
||||
/M { setmiterlimit } bind def
|
||||
/d { setdash } bind def
|
||||
/m { moveto } bind def
|
||||
/l { lineto } bind def
|
||||
/c { curveto } bind def
|
||||
/h { closepath } bind def
|
||||
/re { exch dup neg 3 1 roll 5 3 roll moveto 0 rlineto
|
||||
0 exch rlineto 0 rlineto closepath } bind def
|
||||
/S { stroke } bind def
|
||||
/f { fill } bind def
|
||||
/f* { eofill } bind def
|
||||
/n { newpath } bind def
|
||||
/W { clip } bind def
|
||||
/W* { eoclip } bind def
|
||||
/BT { } bind def
|
||||
/ET { } bind def
|
||||
/pdfmark where { pop globaldict /?pdfmark /exec load put }
|
||||
{ globaldict begin /?pdfmark /pop load def /pdfmark
|
||||
/cleartomark load def end } ifelse
|
||||
/BDC { mark 3 1 roll /BDC pdfmark } bind def
|
||||
/EMC { mark /EMC pdfmark } bind def
|
||||
/cairo_store_point { /cairo_point_y exch def /cairo_point_x exch def } def
|
||||
/Tj { show currentpoint cairo_store_point } bind def
|
||||
/TJ {
|
||||
{
|
||||
dup
|
||||
type /stringtype eq
|
||||
{ show } { -0.001 mul 0 cairo_font_matrix dtransform rmoveto } ifelse
|
||||
} forall
|
||||
currentpoint cairo_store_point
|
||||
} bind def
|
||||
/cairo_selectfont { cairo_font_matrix aload pop pop pop 0 0 6 array astore
|
||||
cairo_font exch selectfont cairo_point_x cairo_point_y moveto } bind def
|
||||
/Tf { pop /cairo_font exch def /cairo_font_matrix where
|
||||
{ pop cairo_selectfont } if } bind def
|
||||
/Td { matrix translate cairo_font_matrix matrix concatmatrix dup
|
||||
/cairo_font_matrix exch def dup 4 get exch 5 get cairo_store_point
|
||||
/cairo_font where { pop cairo_selectfont } if } bind def
|
||||
/Tm { 2 copy 8 2 roll 6 array astore /cairo_font_matrix exch def
|
||||
cairo_store_point /cairo_font where { pop cairo_selectfont } if } bind def
|
||||
/g { setgray } bind def
|
||||
/rg { setrgbcolor } bind def
|
||||
/d1 { setcachedevice } bind def
|
||||
%%EndProlog
|
||||
11 dict begin
|
||||
/FontType 42 def
|
||||
/FontName /DejaVuSans def
|
||||
/PaintType 0 def
|
||||
/FontMatrix [ 1 0 0 1 0 0 ] def
|
||||
/FontBBox [ 0 0 0 0 ] def
|
||||
/Encoding 256 array def
|
||||
0 1 255 { Encoding exch /.notdef put } for
|
||||
Encoding 32 /space put
|
||||
Encoding 48 /zero put
|
||||
Encoding 49 /one put
|
||||
Encoding 50 /two put
|
||||
Encoding 52 /four put
|
||||
Encoding 53 /five put
|
||||
Encoding 54 /six put
|
||||
Encoding 56 /eight put
|
||||
Encoding 77 /M put
|
||||
Encoding 80 /P put
|
||||
Encoding 97 /a put
|
||||
Encoding 100 /d put
|
||||
Encoding 101 /e put
|
||||
Encoding 103 /g put
|
||||
Encoding 105 /i put
|
||||
Encoding 108 /l put
|
||||
Encoding 111 /o put
|
||||
Encoding 112 /p put
|
||||
Encoding 114 /r put
|
||||
Encoding 115 /s put
|
||||
Encoding 117 /u put
|
||||
Encoding 233 /eacute put
|
||||
/CharStrings 23 dict dup begin
|
||||
/.notdef 0 def
|
||||
/zero 1 def
|
||||
/two 2 def
|
||||
/four 3 def
|
||||
/six 4 def
|
||||
/eight 5 def
|
||||
/one 6 def
|
||||
/M 7 def
|
||||
/a 8 def
|
||||
/s 9 def
|
||||
/e 10 def
|
||||
/space 11 def
|
||||
/g 12 def
|
||||
/five 13 def
|
||||
/P 14 def
|
||||
/eacute 15 def
|
||||
/r 16 def
|
||||
/i 17 def
|
||||
/o 18 def
|
||||
/d 19 def
|
||||
/p 20 def
|
||||
/u 21 def
|
||||
/l 22 def
|
||||
end readonly def
|
||||
/sfnts [
|
||||
<0001000000090080000300106376742000691d3900000f60000001fe6670676d7134766a0000
|
||||
1160000000ab676c79667b8bc9c90000009c00000ec468656164fd0346870000120c00000036
|
||||
686865610cb806690000124400000024686d74786e8c0e4800001268000000606c6f63610000
|
||||
cc4c000012c8000000646d617870048506710000132c00000020707265703b07f1000000134c
|
||||
0000056800020066fe96046605a400030007001a400c04fb0006fb0108057f0204002fc4d4ec
|
||||
310010d4ecd4ec301311211125211121660400fc73031bfce5fe96070ef8f272062900020087
|
||||
ffe3048f05f0000b00170023401306a01200a00c91128c18091c0f1e031c151b1810fcecf4ec
|
||||
310010e4f4ec10ee30012202111012333212111002273200111000232200111000028b9c9d9d
|
||||
9c9d9d9d9dfb0109fef7fbfbfef701090550fecdfeccfecdfecd0133013301340133a0fe73fe
|
||||
86fe87fe73018d0179017a018d00000100960000044a05f0001c009a4027191a1b03181c1105
|
||||
0400110505044210a111940da014910400a00200100a02010a1c171003061d10fc4bb015544b
|
||||
b016545b4bb014545b58b90003ffc03859c4d4ecc0c011123931002fec32f4ecf4ec304b5358
|
||||
071005ed0705ed11173959220140325504560556077a047a05761b87190704000419041a041b
|
||||
051c74007606751a731b741c82008619821a821b821ca800a81b115d005d2521152135360037
|
||||
3e0135342623220607353e01333204151406070600018902c1fc4c73018d33614da7865fd378
|
||||
7ad458e80114455b19fef4aaaaaa7701913a6d974977964243cc3132e8c25ca5701dfeeb0000
|
||||
00020064000004a405d50002000d0081401d010d030d0003030d4200030b07a0050103810901
|
||||
0c0a001c0608040c0e10dc4bb00b544bb00d545b58b9000cffc03859d43cc4ec32113931002f
|
||||
e4d43cec321239304b5358071004c9071005c9592201402a0b002a0048005900690077008a00
|
||||
0716012b0026012b0336014e014f0c4f0d5601660175017a0385010d5d005d09012103331133
|
||||
152311231121350306fe0201fe35fed5d5c9fd5e0525fce303cdfc33a8fea00160c300000002
|
||||
008fffe3049605f0000b0024005840241306000d860c00a01606a01c16a510a00c8922911c8c
|
||||
250c22091c191e131c03211f1b2510fcececf4ece4310010e4f4e4fce410ee10ee10ee111239
|
||||
304014cb00cb01cd02cd03cd04cb05cb0607a41eb21e025d015d012206151416333236353426
|
||||
01152e01232202033e0133320015140023200011100021321602a4889f9f88889f9f01094c9b
|
||||
4cc8d30f3bb26be10105fef0e2fefdfeee0150011b4c9b033bbaa2a1bbbba1a2ba0279b82426
|
||||
fef2feef575dfeefebe6feea018d0179016201a51e0000000003008bffe3048b05f0000b0023
|
||||
002f00434025180c00a02706a01e2da012911e8c27a330180c242a1c15241c0f091c151b1e03
|
||||
1c0f211b3010fcc4ecf4c4ec10ee10ee113939310010ece4f4ec10ee10ee3939300122061514
|
||||
16333236353426252e01353424333216151406071e0115140423222435343613141633323635
|
||||
3426232206028b90a5a59090a6a5fea5829100ffdedffe918192a3fef7f7f7fef7a448918382
|
||||
939382839102c59a87879a9b86879a5620b280b3d0d0b380b22022c68fd9e8e8d98fc6016174
|
||||
8282747482820000000100e10000045a05d5000a004040154203a00402a005810700a009081f
|
||||
061c03001f010b10d44bb00f5458b9000100403859ecc4fcec31002fec32f4ecd4ec304b5358
|
||||
592201b40f030f04025d3721110535253311211521fe014afe990165ca014afca4aa047348b8
|
||||
48fad5aa0000000100c90000061f05d5000c00bf403403110708070211010208080702110302
|
||||
090a0901110a0a09420a070203080300af080b050908030201050a061c043e0a1c00040d10fc
|
||||
ecfcec11173931002f3cc4ec32111739304b5358071005ed071008ed071008ed071005ed5922
|
||||
b2700e01015d405603070f080f09020a15021407130a260226072007260a200a3407350a6902
|
||||
7c027b07790a80028207820a90021604010b0313011b0323012c032708280934013c03560859
|
||||
0965086a097608790981018d0395019b03145d005d13210901211123110123011123c9012d01
|
||||
7d017f012dc5fe7fcbfe7fc405d5fc0803f8fa2b051ffc000400fae100000002007bffe3042d
|
||||
047b000a002500bc4027191f0b17090e00a91706b90e1120861fba1cb923b8118c170c001703
|
||||
180d09080b1f030814452610fcecccd4ec323211393931002fc4e4f4fcf4ec10c6ee10ee1139
|
||||
1139123930406e301d301e301f3020302130223f27401d401e401f402040214022501d501e50
|
||||
1f50205021502250277027851d871e871f8720872185229027a027f0271e301e301f30203021
|
||||
401e401f40204021501e501f50205021601e601f60206021701e701f70207021801e801f8020
|
||||
8021185d015d0122061514163332363d01371123350e01232226353436332135342623220607
|
||||
353e0133321602bedfac816f99b9b8b83fbc88accbfdfb0102a79760b65465be5af3f0023366
|
||||
7b6273d9b4294cfd81aa6661c1a2bdc0127f8b2e2eaa2727fc000001006fffe303c7047b0027
|
||||
00e7403c0d0c020e0b531f1e080902070a531f1f1e420a0b1e1f041500860189041486158918
|
||||
b91104b925b8118c281e0a0b1f1b0700521b080e07081422452810fcc4ecd4ece41112393939
|
||||
39310010e4f4ec10fef5ee10f5ee121739304b535807100eed111739070eed1117395922b200
|
||||
2701015d406d1c0a1c0b1c0c2e092c0a2c0b2c0c3b093b0a3b0b3b0c0b200020012402280a28
|
||||
0b2a132f142f152a16281e281f292029212427860a860b860c860d12000000010202060a060b
|
||||
030c030d030e030f03100319031a031b031c041d09272f293f295f297f2980299029a029f029
|
||||
185d005d7101152e012322061514161f011e0115140623222627351e013332363534262f012e
|
||||
01353436333216038b4ea85a898962943fc4a5f7d85ac36c66c661828c65ab40ab98e0ce66b4
|
||||
043fae282854544049210e2a99899cb62323be353559514b50250f2495829eac1e0000000002
|
||||
0071ffe3047f047b0014001b00704024001501098608880515a90105b90c01bb18b912b80c8c
|
||||
1c1b1502081508004b02120f451c10fcecf4ecc4111239310010e4f4ece410ee10ee10f4ee11
|
||||
12393040293f1d701da01dd01df01d053f003f013f023f153f1b052c072f082f092c0a6f006f
|
||||
016f026f156f1b095d71015d0115211e0133323637150e01232000111000333200072e012322
|
||||
0607047ffcb20ccdb76ac76263d06bfef4fec70129fce20107b802a5889ab90e025e5abec734
|
||||
34ae2a2c0138010a01130143feddc497b4ae9e0000020071fe56045a047b000b0028004a4023
|
||||
190c1d0912861316b90f03b92623b827bc09b90fbd1a1d261900080c4706121220452910fcc4
|
||||
ecf4ec323231002fc4e4ece4f4c4ec10fed5ee1112393930b6602a802aa02a03015d01342623
|
||||
220615141633323617100221222627351e013332363d010e0123220211101233321617353303
|
||||
a2a59594a5a59495a5b8fefefa61ac51519e52b5b439b27ccefcfcce7cb239b8023dc8dcdcc8
|
||||
c7dcdcebfee2fee91d1eb32c2abdbf5b6362013a01030104013a6263aa000001009effe30464
|
||||
05d5001d005e4023041a071186101d1aa00714a010890d02a000810d8c07a41e171c010a031c
|
||||
000a10061e10fc014bb016544bb014545b58b90010ffc038594bb00f5458b9001000403859c4
|
||||
d4ec10c4ee310010e4e4f4ec10e6ee10fec410ee1112393013211521113e0133320015140021
|
||||
222627351e0133323635342623220607dd0319fda02c582cfa0124fed4feef5ec3685ac06bad
|
||||
cacaad51a15405d5aafe920f0ffeeeeaf1fef52020cb3130b69c9cb624260000000200c90000
|
||||
048d05d500080013003a40180195100095098112100a0802040005190d3f11001c09041410fc
|
||||
ec32fcec11173931002ff4ecd4ec30400b0f151f153f155f15af1505015d0111333236353426
|
||||
23252132041514042b0111230193fe8d9a9a8dfe3801c8fb0101fefffbfeca052ffdcf928786
|
||||
92a6e3dbdde2fda8ffff0071ffe3047f06661226000a000010070017008b0000000100ba0000
|
||||
034a047b001100304014060b0700110b03870eb809bc070a06080008461210fcc4ec3231002f
|
||||
e4f4ecc4d4cc11123930b450139f1302015d012e012322061511231133153e0133321617034a
|
||||
1f492c9ca7b9b93aba85132e1c03b41211cbbefdb20460ae666305050000000200c100000179
|
||||
061400030007002b400e06be04b100bc020501080400460810fc3cec3231002fe4fcec30400b
|
||||
1009400950096009700905015d1333112311331523c1b8b8b8b80460fba00614e90000020071
|
||||
ffe30475047b000b0017004a401306b91200b90cb8128c1809120f51031215451810fcecf4ec
|
||||
310010e4f4ec10ee3040233f197b007b067f077f087f097f0a7f0b7b0c7f0d7f0e7f0f7f107f
|
||||
117b12a019f01911015d012206151416333236353426273200111000232200111000027394ac
|
||||
ab9593acac93f00112feeef0f1feef011103dfe7c9c9e7e8c8c7e99cfec8feecfeedfec70139
|
||||
011301140138000000020071ffe3045a06140010001c003840191ab9000e14b905088c0eb801
|
||||
970317040008024711120b451d10fcecf4ec323231002fece4f4c4ec10c4ee30b6601e801ea0
|
||||
1e03015d0111331123350e0123220211100033321601141633323635342623220603a2b8b83a
|
||||
b17ccbff00ffcb7cb1fdc7a79292a8a89292a703b6025ef9eca86461014401080108014461fe
|
||||
15cbe7e7cbcbe7e7000200bafe5604a4047b0010001c003e401b1ab9000e14b90508b80e8c01
|
||||
bd03bc1d11120b471704000802461d10fcec3232f4ec310010e4e4e4f4c4ec10c4ee30400960
|
||||
1e801ea01ee01e04015d2511231133153e013332001110022322260134262322061514163332
|
||||
360173b9b93ab17bcc00ffffcc7bb10238a79292a7a79292a7a8fdae060aaa6461febcfef8fe
|
||||
f8febc6101ebcbe7e7cbcbe7e7000000000200aeffe30458047b00130014003b401c03090003
|
||||
0e0106870e118c0a01bc14b80c0d0908140b4e020800461510fcecf439ec3231002fe4e432f4
|
||||
c4ec1112173930b46f15c01502015d1311331114163332363511331123350e0123222601aeb8
|
||||
7c7c95adb8b843b175c1c801cf01ba02a6fd619f9fbea4027bfba0ac6663f003a800000100c1
|
||||
00000179061400030022b7009702010800460410fcec31002fec30400d100540055005600570
|
||||
05f00506015d13331123c1b8b80614f9ec000001017304ee0352066600030031400902b400b3
|
||||
040344010410d4ec310010f4ec30004bb009544bb00e545b58bd0004ffc00001000400040040
|
||||
381137385901330123028bc7feba990666fe88000000013500b800cb00cb00c100aa009c01a6
|
||||
00b800660000007100cb00a002b20085007500b800c301cb0189022d00cb00a600f000d300aa
|
||||
008700cb03aa0400014a003300cb000000d9050200f4015400b4009c01390114013907060400
|
||||
044e04b4045204b804e704cd0037047304cd04600473013303a2055605a60556053903c50212
|
||||
00c9001f00b801df007300ba03e9033303bc0444040e00df03cd03aa00e503aa0404000000cb
|
||||
008f00a4007b00b80014016f007f027b0252008f00c705cd009a009a006f00cb00cd019e01d3
|
||||
00f000ba018300d5009803040248009e01d500c100cb00f600830354027f00000333026600d3
|
||||
00c700a400cd008f009a0073040005d5010a00fe022b00a400b4009c00000062009c0000001d
|
||||
032d05d505d505d505f0007f007b005400a406b80614072301d300b800cb00a601c301ec0693
|
||||
00a000d3035c037103db0185042304a80448008f0139011401390360008f05d5019a06140723
|
||||
06660179046004600460047b009c00000277046001aa00e904600762007b00c5007f027b0000
|
||||
00b4025205cd006600bc00660077061000cd013b01850389008f007b0000001d00cd074a042f
|
||||
009c009c0000077d006f0000006f0335006a006f007b00ae00b2002d0396008f027b00f60083
|
||||
0354063705f6008f009c04e10266008f018d02f600cd03440029006604ee0073000014000096
|
||||
0000b707060504030201002c2010b002254964b040515820c859212d2cb002254964b0405158
|
||||
20c859212d2c20100720b00050b00d7920b8ffff5058041b0559b0051cb0032508b0042523e1
|
||||
20b00050b00d7920b8ffff5058041b0559b0051cb0032508e12d2c4b505820b0fd454459212d
|
||||
2cb002254560442d2c4b5358b00225b0022545445921212d2c45442d2cb00225b0022549b005
|
||||
25b005254960b0206368208a108a233a8a10653a2d00000100000002547ab2d43b905f0f3cf5
|
||||
001f080000000000cc44538600000000cc445386f7d6fcae0d72095500000008000000010000
|
||||
000000010000076dfe1d00000de2f7d6fa510d72000100000000000000000000000000000018
|
||||
04cd00660517008705170096051700640517008f0517008b051700e106e700c904e7007b042b
|
||||
006f04ec0071028b0000051400710517009e04d300c904ec0071034a00ba023900c104e50071
|
||||
05140071051400ba051200ae023900c1040001730000000000000044000000c8000001c40000
|
||||
0280000003580000042c0000049c00000598000006c400000824000008f8000008f8000009c0
|
||||
00000a8000000b0000000b1800000b8800000bd800000c7c00000d1400000db400000e380000
|
||||
0e7400000ec40001000000180354002b0068000c000200100099000800000415021600080004
|
||||
b8028040fffbfe03fa1403f92503f83203f79603f60e03f5fe03f4fe03f32503f20e03f19603
|
||||
f02503ef8a4105effe03ee9603ed9603ecfa03ebfa03eafe03e93a03e84203e7fe03e63203e5
|
||||
e45305e59603e48a4105e45303e3e22f05e3fa03e22f03e1fe03e0fe03df3203de1403dd9603
|
||||
dcfe03db1203da7d03d9bb03d8fe03d68a4105d67d03d5d44705d57d03d44703d3d21b05d3fe
|
||||
03d21b03d1fe03d0fe03cffe03cefe03cd9603cccb1e05ccfe03cb1e03ca3203c9fe03c68511
|
||||
05c61c03c51603c4fe03c3fe03c2fe03c1fe03c0fe03bffe03befe03bdfe03bcfe03bbfe03ba
|
||||
1103b9862505b9fe03b8b7bb05b8fe03b7b65d05b7bb03b78004b6b52505b65d40ff03b64004
|
||||
b52503b4fe03b39603b2fe03b1fe03b0fe03affe03ae6403ad0e03acab2505ac6403abaa1205
|
||||
ab2503aa1203a98a4105a9fa03a8fe03a7fe03a6fe03a51203a4fe03a3a20e05a33203a20e03
|
||||
a16403a08a4105a096039ffe039e9d0c059efe039d0c039c9b19059c64039b9a10059b19039a
|
||||
1003990a0398fe0397960d0597fe03960d03958a410595960394930e05942803930e0392fa03
|
||||
9190bb0591fe03908f5d0590bb039080048f8e25058f5d038f40048e25038dfe038c8b2e058c
|
||||
fe038b2e038a8625058a410389880b05891403880b0387862505876403868511058625038511
|
||||
0384fe038382110583fe0382110381fe0380fe037ffe0340ff7e7d7d057efe037d7d037c6403
|
||||
7b5415057b25037afe0379fe03780e03770c03760a0375fe0374fa0373fa0372fa0371fa0370
|
||||
fe036ffe036efe036c21036bfe036a1142056a530369fe03687d036711420566fe0365fe0364
|
||||
fe0363fe0362fe03613a0360fa035e0c035dfe035bfe035afe0359580a0559fa03580a035716
|
||||
190557320356fe035554150555420354150353011005531803521403514a130551fe03500b03
|
||||
4ffe034e4d10054efe034d10034cfe034b4a13054bfe034a4910054a1303491d0d0549100348
|
||||
0d0347fe0346960345960344fe0343022d0543fa0342bb03414b0340fe033ffe033e3d12053e
|
||||
14033d3c0f053d12033c3b0d053c40ff0f033b0d033afe0339fe033837140538fa0337361005
|
||||
37140336350b05361003350b03341e03330d0332310b0532fe03310b03302f0b05300d032f0b
|
||||
032e2d09052e10032d09032c32032b2a25052b64032a2912052a250329120328272505284103
|
||||
27250326250b05260f03250b0324fe0323fe03220f03210110052112032064031ffa031e1d0d
|
||||
051e64031d0d031c1142051cfe031bfa031a42031911420519fe031864031716190517fe0316
|
||||
01100516190315fe0314fe0313fe031211420512fe0311022d05114203107d030f64030efe03
|
||||
0d0c16050dfe030c0110050c16030bfe030a100309fe0308022d0508fe030714030664030401
|
||||
100504fe03401503022d0503fe0302011005022d0301100300fe0301b80164858d012b2b2b2b
|
||||
2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b
|
||||
2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b
|
||||
2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b
|
||||
2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b
|
||||
2b2b2b2b2b2b2b2b2b002b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b
|
||||
2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b
|
||||
2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b
|
||||
2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b
|
||||
2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b1d00>
|
||||
] def
|
||||
/f-0-0 currentdict end definefont pop
|
||||
%%Page: 1 1
|
||||
%%BeginPageSetup
|
||||
%%PageBoundingBox: 0 -1 449 294
|
||||
%%EndPageSetup
|
||||
q 0 -1 449 295 rectclip q
|
||||
Q q
|
||||
0 293.99 448.512 -293.988 re W n
|
||||
1 g
|
||||
0 293.99 448.512 -293.988 re f
|
||||
0.815686 g
|
||||
40.453 285.04 393.336 -251.043 re f
|
||||
0.517647 0.509804 0.517647 rg
|
||||
1 w
|
||||
1 J
|
||||
1 j
|
||||
[] 0.0 d
|
||||
10 M 40.453 285.04 393.336 -251.043 re S
|
||||
0 g
|
||||
0.5 w
|
||||
40.453 33.997 m 433.789 33.997 l 40.453 29.747 m 40.453 33.997 l 106.008
|
||||
29.747 m 106.008 33.997 l 171.566 29.747 m 171.566 33.997 l 237.121 29.747
|
||||
m 237.121 33.997 l 302.676 29.747 m 302.676 33.997 l 368.234 29.747 m 368.234
|
||||
33.997 l 433.789 29.747 m 433.789 33.997 l S
|
||||
BT
|
||||
8 0 0 8 37.660156 22.321531 Tm
|
||||
/f-0-0 1 Tf
|
||||
[(0)-7240(20)]TJ
|
||||
16.070801 0 Td
|
||||
[(40)-6922(60)]TJ
|
||||
16.388672 0 Td
|
||||
[(80)-6604(100)]TJ
|
||||
16.070801 0 Td
|
||||
(120)Tj
|
||||
10 0 0 10 216.445312 6.902586 Tm
|
||||
(Masse g)Tj
|
||||
ET
|
||||
40.453 33.997 m 40.453 285.04 l 36.203 33.997 m 40.453 33.997 l 36.203
|
||||
96.759 m 40.453 96.759 l 36.203 159.517 m 40.453 159.517 l 36.203 222.279
|
||||
m 40.453 222.279 l 36.203 285.04 m 40.453 285.04 l S
|
||||
BT
|
||||
8 0 0 8 27.820312 31.477781 Tm
|
||||
/f-0-0 1 Tf
|
||||
(0)Tj
|
||||
0 7.845215 Td
|
||||
(5)Tj
|
||||
-0.63623 7.844727 Td
|
||||
(10)Tj
|
||||
0 7.845215 Td
|
||||
(15)Tj
|
||||
0 7.845215 Td
|
||||
(20)Tj
|
||||
0.000000000000000612 10 -10 0.000000000000000612 13.325195 128.669188 Tm
|
||||
[(P)34(\351riode puls)]TJ
|
||||
ET
|
||||
1 w
|
||||
73.23 234.829 m 73.23 209.728 l 70.73 234.829 m 75.73 234.829 l 70.73 209.728
|
||||
m 75.73 209.728 l S
|
||||
106.008 222.279 m 106.008 197.173 l 103.508 222.279 m 108.508 222.279 l
|
||||
103.508 197.173 m 108.508 197.173 l S
|
||||
138.789 234.829 m 138.789 209.728 l 136.289 234.829 m 141.289 234.829 l
|
||||
136.289 209.728 m 141.289 209.728 l S
|
||||
171.566 209.728 m 171.566 184.622 l 169.066 209.728 m 174.066 209.728 l
|
||||
169.066 184.622 m 174.066 184.622 l S
|
||||
204.344 234.829 m 204.344 209.728 l 201.844 234.829 m 206.844 234.829 l
|
||||
201.844 209.728 m 206.844 209.728 l S
|
||||
237.121 234.829 m 237.121 209.728 l 234.621 234.829 m 239.621 234.829 l
|
||||
234.621 209.728 m 239.621 209.728 l S
|
||||
269.898 222.279 m 269.898 197.173 l 267.398 222.279 m 272.398 222.279 l
|
||||
267.398 197.173 m 272.398 197.173 l S
|
||||
302.676 234.829 m 302.676 209.728 l 300.176 234.829 m 305.176 234.829 l
|
||||
300.176 209.728 m 305.176 209.728 l S
|
||||
335.457 222.279 m 335.457 197.173 l 332.957 222.279 m 337.957 222.279 l
|
||||
332.957 197.173 m 337.957 197.173 l S
|
||||
368.234 222.279 m 368.234 197.173 l 365.734 222.279 m 370.734 222.279 l
|
||||
365.734 197.173 m 370.734 197.173 l S
|
||||
0 0 0.501961 rg
|
||||
73.23 224.779 m 75.73 222.279 l 73.23 219.779 l 70.73 222.279 l h
|
||||
f
|
||||
0.5 w
|
||||
2 J
|
||||
0 j
|
||||
q 1 0 0 -1 0 293.9895 cm
|
||||
73.23 69.211 m 75.73 71.711 l 73.23 74.211 l 70.73 71.711 l h
|
||||
S Q
|
||||
106.008 212.228 m 108.508 209.728 l 106.008 207.228 l 103.508 209.728 l
|
||||
h
|
||||
f
|
||||
q 1 0 0 -1 0 293.9895 cm
|
||||
106.008 81.762 m 108.508 84.262 l 106.008 86.762 l 103.508 84.262 l h
|
||||
S Q
|
||||
138.789 224.779 m 141.289 222.279 l 138.789 219.779 l 136.289 222.279 l
|
||||
h
|
||||
f
|
||||
q 1 0 0 -1 0 293.9895 cm
|
||||
138.789 69.211 m 141.289 71.711 l 138.789 74.211 l 136.289 71.711 l h
|
||||
S Q
|
||||
171.566 199.673 m 174.066 197.173 l 171.566 194.673 l 169.066 197.173 l
|
||||
h
|
||||
f
|
||||
q 1 0 0 -1 0 293.9895 cm
|
||||
171.566 94.316 m 174.066 96.816 l 171.566 99.316 l 169.066 96.816 l h
|
||||
S Q
|
||||
204.344 224.779 m 206.844 222.279 l 204.344 219.779 l 201.844 222.279 l
|
||||
h
|
||||
f
|
||||
q 1 0 0 -1 0 293.9895 cm
|
||||
204.344 69.211 m 206.844 71.711 l 204.344 74.211 l 201.844 71.711 l h
|
||||
S Q
|
||||
237.121 224.779 m 239.621 222.279 l 237.121 219.779 l 234.621 222.279 l
|
||||
h
|
||||
f
|
||||
q 1 0 0 -1 0 293.9895 cm
|
||||
237.121 69.211 m 239.621 71.711 l 237.121 74.211 l 234.621 71.711 l h
|
||||
S Q
|
||||
269.898 212.228 m 272.398 209.728 l 269.898 207.228 l 267.398 209.728 l
|
||||
h
|
||||
f
|
||||
q 1 0 0 -1 0 293.9895 cm
|
||||
269.898 81.762 m 272.398 84.262 l 269.898 86.762 l 267.398 84.262 l h
|
||||
S Q
|
||||
302.676 224.779 m 305.176 222.279 l 302.676 219.779 l 300.176 222.279 l
|
||||
h
|
||||
f
|
||||
q 1 0 0 -1 0 293.9895 cm
|
||||
302.676 69.211 m 305.176 71.711 l 302.676 74.211 l 300.176 71.711 l h
|
||||
S Q
|
||||
335.457 212.228 m 337.957 209.728 l 335.457 207.228 l 332.957 209.728 l
|
||||
h
|
||||
f
|
||||
q 1 0 0 -1 0 293.9895 cm
|
||||
335.457 81.762 m 337.957 84.262 l 335.457 86.762 l 332.957 84.262 l h
|
||||
S Q
|
||||
368.234 212.228 m 370.734 209.728 l 368.234 207.228 l 365.734 209.728 l
|
||||
h
|
||||
f
|
||||
q 1 0 0 -1 0 293.9895 cm
|
||||
368.234 81.762 m 370.734 84.262 l 368.234 86.762 l 365.734 84.262 l h
|
||||
S Q
|
||||
Q Q
|
||||
showpage
|
||||
%%Trailer
|
||||
end restore
|
||||
%%EOF
|
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,246 @@
|
|||
%!PS-Adobe-3.0 EPSF-3.0
|
||||
%%Creator: cairo 1.14.8 (http://cairographics.org)
|
||||
%%CreationDate: Fri May 10 11:35:02 2019
|
||||
%%Pages: 1
|
||||
%%DocumentData: Clean7Bit
|
||||
%%LanguageLevel: 2
|
||||
%%BoundingBox: 0 -1 148 62
|
||||
%%EndComments
|
||||
%%BeginProlog
|
||||
save
|
||||
50 dict begin
|
||||
/q { gsave } bind def
|
||||
/Q { grestore } bind def
|
||||
/cm { 6 array astore concat } bind def
|
||||
/w { setlinewidth } bind def
|
||||
/J { setlinecap } bind def
|
||||
/j { setlinejoin } bind def
|
||||
/M { setmiterlimit } bind def
|
||||
/d { setdash } bind def
|
||||
/m { moveto } bind def
|
||||
/l { lineto } bind def
|
||||
/c { curveto } bind def
|
||||
/h { closepath } bind def
|
||||
/re { exch dup neg 3 1 roll 5 3 roll moveto 0 rlineto
|
||||
0 exch rlineto 0 rlineto closepath } bind def
|
||||
/S { stroke } bind def
|
||||
/f { fill } bind def
|
||||
/f* { eofill } bind def
|
||||
/n { newpath } bind def
|
||||
/W { clip } bind def
|
||||
/W* { eoclip } bind def
|
||||
/BT { } bind def
|
||||
/ET { } bind def
|
||||
/pdfmark where { pop globaldict /?pdfmark /exec load put }
|
||||
{ globaldict begin /?pdfmark /pop load def /pdfmark
|
||||
/cleartomark load def end } ifelse
|
||||
/BDC { mark 3 1 roll /BDC pdfmark } bind def
|
||||
/EMC { mark /EMC pdfmark } bind def
|
||||
/cairo_store_point { /cairo_point_y exch def /cairo_point_x exch def } def
|
||||
/Tj { show currentpoint cairo_store_point } bind def
|
||||
/TJ {
|
||||
{
|
||||
dup
|
||||
type /stringtype eq
|
||||
{ show } { -0.001 mul 0 cairo_font_matrix dtransform rmoveto } ifelse
|
||||
} forall
|
||||
currentpoint cairo_store_point
|
||||
} bind def
|
||||
/cairo_selectfont { cairo_font_matrix aload pop pop pop 0 0 6 array astore
|
||||
cairo_font exch selectfont cairo_point_x cairo_point_y moveto } bind def
|
||||
/Tf { pop /cairo_font exch def /cairo_font_matrix where
|
||||
{ pop cairo_selectfont } if } bind def
|
||||
/Td { matrix translate cairo_font_matrix matrix concatmatrix dup
|
||||
/cairo_font_matrix exch def dup 4 get exch 5 get cairo_store_point
|
||||
/cairo_font where { pop cairo_selectfont } if } bind def
|
||||
/Tm { 2 copy 8 2 roll 6 array astore /cairo_font_matrix exch def
|
||||
cairo_store_point /cairo_font where { pop cairo_selectfont } if } bind def
|
||||
/g { setgray } bind def
|
||||
/rg { setrgbcolor } bind def
|
||||
/d1 { setcachedevice } bind def
|
||||
%%EndProlog
|
||||
%%BeginSetup
|
||||
%%EndSetup
|
||||
%%Page: 1 1
|
||||
%%BeginPageSetup
|
||||
%%PageBoundingBox: 0 -1 148 62
|
||||
%%EndPageSetup
|
||||
q 0 -1 148 63 rectclip q
|
||||
1 g
|
||||
0 11.235 147.895 -5.441 re f*
|
||||
0.0117647 g
|
||||
0.283465 w
|
||||
1 J
|
||||
2 j
|
||||
[] 0.0 d
|
||||
10 M q 1 0 0 1 0 62.305279 cm
|
||||
1.422 -51.07 144.934 -11.094 re S Q
|
||||
1 g
|
||||
51.398 32.708 3.438 -15.605 re f*
|
||||
0.0117647 g
|
||||
q 1 0 0 1 0 62.305279 cm
|
||||
51.398 -29.598 3.438 -15.605 re S Q
|
||||
1 g
|
||||
52.543 17.102 1.289 -5.867 re f*
|
||||
0.0117647 g
|
||||
q 1 0 0 1 0 62.305279 cm
|
||||
52.543 -45.203 1.289 -5.867 re S Q
|
||||
0.505882 0.494118 0.494118 rg
|
||||
52.215 19.208 m 52.23 19.708 52.648 20.102 53.145 20.087 c 53.645 20.067
|
||||
54.035 19.649 54.02 19.149 c 54 18.649 53.586 18.258 53.09 18.274 c 52.602
|
||||
18.29 52.215 18.688 52.215 19.18 c f*
|
||||
0.0117647 g
|
||||
0.0554851 w
|
||||
q 1 0 0 -0.902843 0 62.305279 cm
|
||||
52.215 47.736 m 52.23 47.182 52.648 46.745 53.145 46.766 c 53.645 46.784
|
||||
54.035 47.247 54.02 47.8 c 54 48.354 53.586 48.787 53.09 48.77 c 52.602
|
||||
48.752 52.215 48.311 52.215 47.766 c S Q
|
||||
1 g
|
||||
107.664 32.708 3.438 -15.605 re f*
|
||||
0.0117647 g
|
||||
0.283465 w
|
||||
q 1 0 0 1 0 62.305279 cm
|
||||
107.664 -29.598 3.438 -15.605 re S Q
|
||||
1 g
|
||||
108.809 17.102 1.289 -5.867 re f*
|
||||
0.0117647 g
|
||||
q 1 0 0 1 0 62.305279 cm
|
||||
108.809 -45.203 1.289 -5.867 re S Q
|
||||
0.505882 0.494118 0.494118 rg
|
||||
108.48 19.208 m 108.5 19.708 108.914 20.102 109.414 20.087 c 109.91 20.067
|
||||
110.301 19.649 110.285 19.149 c 110.27 18.649 109.852 18.258 109.355 18.274
|
||||
c 108.867 18.29 108.48 18.688 108.48 19.18 c f*
|
||||
0.0117647 g
|
||||
0.0554851 w
|
||||
q 1 0 0 -0.902843 0 62.305279 cm
|
||||
108.48 47.736 m 108.496 47.182 108.914 46.745 109.414 46.766 c 109.91 46.784
|
||||
110.301 47.247 110.285 47.8 c 110.27 48.354 109.852 48.787 109.355 48.77
|
||||
c 108.867 48.752 108.48 48.311 108.48 47.766 c S Q
|
||||
0.505882 0.494118 0.494118 rg
|
||||
21.762 17.102 14.316 -3.434 re f*
|
||||
0.0117647 g
|
||||
0.226772 w
|
||||
1 j
|
||||
q 1 0 0 1 0 62.305279 cm
|
||||
21.762 -45.203 14.316 -3.434 re S Q
|
||||
0.505882 0.494118 0.494118 rg
|
||||
23.051 12.629 m 23.07 13.219 23.566 13.684 24.16 13.665 c 24.75 13.649
|
||||
25.215 13.153 25.199 12.559 c 25.18 11.965 24.684 11.501 24.09 11.52 c 23.512
|
||||
11.54 23.051 12.012 23.051 12.594 c f*
|
||||
0.0117647 g
|
||||
q 1 0 0 1 0 62.305279 cm
|
||||
23.051 -49.676 m 23.07 -49.086 23.566 -48.621 24.16 -48.641 c 24.75 -48.656
|
||||
25.215 -49.152 25.199 -49.746 c 25.18 -50.34 24.684 -50.805 24.09 -50.785
|
||||
c 23.512 -50.766 23.051 -50.293 23.051 -49.711 c S Q
|
||||
0.505882 0.494118 0.494118 rg
|
||||
32.5 12.629 m 32.52 13.219 33.016 13.684 33.609 13.665 c 34.199 13.649
|
||||
34.664 13.153 34.648 12.559 c 34.629 11.965 34.133 11.501 33.539 11.52 c
|
||||
32.961 11.54 32.5 12.012 32.5 12.594 c f*
|
||||
0.0117647 g
|
||||
q 1 0 0 1 0 62.305279 cm
|
||||
32.5 -49.676 m 32.52 -49.086 33.016 -48.621 33.609 -48.641 c 34.199 -48.656
|
||||
34.664 -49.152 34.648 -49.746 c 34.629 -50.34 34.133 -50.805 33.539 -50.785
|
||||
c 32.961 -50.766 32.5 -50.293 32.5 -49.711 c S Q
|
||||
0 g
|
||||
q 1 0 0 1 0 62.305279 cm
|
||||
23.336 -40.766 11.023 -4.293 re S Q
|
||||
q 1 0 0 1 0 62.305279 cm
|
||||
74.594 -1.176 13.172 -17.465 re S Q
|
||||
q 1 0 0 1 0 62.305279 cm
|
||||
76.238 -3.465 9.879 -5.156 re S Q
|
||||
0.283465 w
|
||||
0 J
|
||||
0 j
|
||||
q 1 0 0 1 0 62.305279 cm
|
||||
74.449 -16.715 m 74.449 -16.715 53.117 -15.277 53.117 -29.453 c S Q
|
||||
q 1 0 0 1 0 62.305279 cm
|
||||
87.906 -16.555 m 87.906 -16.555 109.238 -15.098 109.238 -29.453 c S Q
|
||||
q 1 0 0 1 0 62.305279 cm
|
||||
25.293 -40.793 m 25.301 -43.391 l S Q
|
||||
q 1 0 0 1 0 62.305279 cm
|
||||
32.398 -40.801 m 32.406 -43.402 l S Q
|
||||
q 1 0 0 1 0 62.305279 cm
|
||||
28.844 -40.801 m 28.855 -43.402 l S Q
|
||||
0.276245 w
|
||||
q 1 0 0 1 0 62.305279 cm
|
||||
27.066 -40.797 m 27.082 -42.199 l S Q
|
||||
q 1 0 0 1 0 62.305279 cm
|
||||
30.617 -40.797 m 30.633 -42.199 l S Q
|
||||
0.283465 w
|
||||
1 J
|
||||
1 j
|
||||
q 1 0 0 1 0 62.305279 cm
|
||||
1.371 -45.609 7.621 -3.25 re S Q
|
||||
0.286472 w
|
||||
q 1 0 0 1 0 62.305279 cm
|
||||
2.309 -48.871 5.805 -2.203 re S Q
|
||||
0.226772 w
|
||||
[ 0.680315 0.680315] 0 d
|
||||
q 1 0 0 1 0 62.305279 cm
|
||||
4.199 -46.617 8.105 -1.113 re S Q
|
||||
0.277443 w
|
||||
[] 0.0 d
|
||||
q 1 0 0 1 0 62.305279 cm
|
||||
8.973 -46.637 3.34 -1.113 re S Q
|
||||
0.283465 w
|
||||
0 J
|
||||
0 j
|
||||
q 1 0 0 1 0 62.305279 cm
|
||||
44.105 -51.23 m 44.105 -54.605 l S Q
|
||||
q 1 0 0 1 0 62.305279 cm
|
||||
53.422 -51.23 m 53.422 -54.605 l S Q
|
||||
q 1 0 0 1 0 62.305279 cm
|
||||
127.945 -51.23 m 127.945 -54.605 l S Q
|
||||
q 1 0 0 1 0 62.305279 cm
|
||||
62.734 -51.23 m 62.734 -54.605 l S Q
|
||||
q 1 0 0 1 0 62.305279 cm
|
||||
72.051 -51.23 m 72.051 -54.605 l S Q
|
||||
q 1 0 0 1 0 62.305279 cm
|
||||
81.367 -51.23 m 81.367 -54.605 l S Q
|
||||
q 1 0 0 1 0 62.305279 cm
|
||||
90.684 -51.23 m 90.684 -54.605 l S Q
|
||||
q 1 0 0 1 0 62.305279 cm
|
||||
100 -51.23 m 100 -54.605 l S Q
|
||||
q 1 0 0 1 0 62.305279 cm
|
||||
109.312 -51.23 m 109.312 -54.605 l S Q
|
||||
q 1 0 0 1 0 62.305279 cm
|
||||
118.629 -51.23 m 118.629 -54.605 l S Q
|
||||
0.204738 w
|
||||
q 1 0 0 1 0 62.305279 cm
|
||||
48.762 -51.191 m 48.762 -52.953 l S Q
|
||||
q 1 0 0 1 0 62.305279 cm
|
||||
58.078 -51.191 m 58.078 -52.953 l S Q
|
||||
q 1 0 0 1 0 62.305279 cm
|
||||
67.395 -51.191 m 67.395 -52.953 l S Q
|
||||
q 1 0 0 1 0 62.305279 cm
|
||||
76.711 -51.191 m 76.711 -52.953 l S Q
|
||||
q 1 0 0 1 0 62.305279 cm
|
||||
86.027 -51.191 m 86.027 -52.953 l S Q
|
||||
q 1 0 0 1 0 62.305279 cm
|
||||
95.34 -51.191 m 95.34 -52.953 l S Q
|
||||
q 1 0 0 1 0 62.305279 cm
|
||||
104.656 -51.191 m 104.656 -52.953 l S Q
|
||||
q 1 0 0 1 0 62.305279 cm
|
||||
113.973 -51.191 m 113.973 -52.953 l S Q
|
||||
q 1 0 0 1 0 62.305279 cm
|
||||
123.289 -51.191 m 123.289 -52.953 l S Q
|
||||
0.375 w
|
||||
4 M q 1 0 0 1 0 62.305279 cm
|
||||
56.086 -42.98 m 106.391 -43.098 l S Q
|
||||
57.586 19.325 m 58.336 18.571 l 55.711 19.329 l 58.336 20.071 l h
|
||||
57.586 19.325 m f*
|
||||
0.199999 w
|
||||
q 1 -0.0023593 0.0023593 1 0 62.305279 cm
|
||||
57.687 -42.844 m 58.439 -43.597 l 55.812 -42.845 l 58.435 -42.097 l h
|
||||
57.687 -42.844 m S Q
|
||||
104.891 19.212 m 104.145 19.962 l 106.766 19.208 l 104.141 18.462 l h
|
||||
104.891 19.212 m f*
|
||||
q -1 0.0023593 -0.0023593 -1 0 62.305279 cm
|
||||
-104.992 42.846 m -104.244 42.098 l -106.867 42.846 l -104.243 43.598 l
|
||||
h
|
||||
-104.992 42.846 m S Q
|
||||
Q Q
|
||||
showpage
|
||||
%%Trailer
|
||||
end restore
|
||||
%%EOF
|
|
@ -0,0 +1,64 @@
|
|||
%% Creator: Inkscape inkscape 0.92.1, www.inkscape.org
|
||||
%% PDF/EPS/PS + LaTeX output extension by Johan Engelen, 2010
|
||||
%% Accompanies image file 'RailHorizontal2.eps' (pdf, eps, ps)
|
||||
%%
|
||||
%% To include the image in your LaTeX document, write
|
||||
%% \input{<filename>.pdf_tex}
|
||||
%% instead of
|
||||
%% \includegraphics{<filename>.pdf}
|
||||
%% To scale the image, write
|
||||
%% \def\svgwidth{<desired width>}
|
||||
%% \input{<filename>.pdf_tex}
|
||||
%% instead of
|
||||
%% \includegraphics[width=<desired width>]{<filename>.pdf}
|
||||
%%
|
||||
%% Images with a different path to the parent latex file can
|
||||
%% be accessed with the `import' package (which may need to be
|
||||
%% installed) using
|
||||
%% \usepackage{import}
|
||||
%% in the preamble, and then including the image with
|
||||
%% \import{<path to file>}{<filename>.pdf_tex}
|
||||
%% Alternatively, one can specify
|
||||
%% \graphicspath{{<path to file>/}}
|
||||
%%
|
||||
%% For more information, please see info/svg-inkscape on CTAN:
|
||||
%% http://tug.ctan.org/tex-archive/info/svg-inkscape
|
||||
%%
|
||||
\begingroup%
|
||||
\makeatletter%
|
||||
\providecommand\color[2][]{%
|
||||
\errmessage{(Inkscape) Color is used for the text in Inkscape, but the package 'color.sty' is not loaded}%
|
||||
\renewcommand\color[2][]{}%
|
||||
}%
|
||||
\providecommand\transparent[1]{%
|
||||
\errmessage{(Inkscape) Transparency is used (non-zero) for the text in Inkscape, but the package 'transparent.sty' is not loaded}%
|
||||
\renewcommand\transparent[1]{}%
|
||||
}%
|
||||
\providecommand\rotatebox[2]{#2}%
|
||||
\ifx\svgwidth\undefined%
|
||||
\setlength{\unitlength}{147.8961993bp}%
|
||||
\ifx\svgscale\undefined%
|
||||
\relax%
|
||||
\else%
|
||||
\setlength{\unitlength}{\unitlength * \real{\svgscale}}%
|
||||
\fi%
|
||||
\else%
|
||||
\setlength{\unitlength}{\svgwidth}%
|
||||
\fi%
|
||||
\global\let\svgwidth\undefined%
|
||||
\global\let\svgscale\undefined%
|
||||
\makeatother%
|
||||
\begin{picture}(1,0.42127708)%
|
||||
\put(0,0){\includegraphics[width=\unitlength]{RailHorizontal2.eps}}%
|
||||
\put(0.26908193,0.33463837){\color[rgb]{0,0,0}\makebox(0,0)[lb]{\smash{chronomètre}}}%
|
||||
\put(0.04340142,0.13100805){\color[rgb]{0,0,0}\rotatebox{90}{\makebox(0,0)[lb]{\smash{propulseur}}}}%
|
||||
\put(0.1328738,0.16793334){\color[rgb]{0,0,0}\makebox(0,0)[lb]{\smash{chariot}}}%
|
||||
\put(0.54051874,0.37676736){\color[rgb]{0,0,0}\makebox(0,0)[lb]{\smash{t}}}%
|
||||
\put(0.36111782,0.02203495){\color[rgb]{0,0,0}\makebox(0,0)[b]{\smash{$x_0$}}}%
|
||||
\put(0.37555482,0.46857367){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.23318169\unitlength}\raggedright \end{minipage}}}%
|
||||
\put(0.74066482,0.02020256){\color[rgb]{0,0,0}\makebox(0,0)[b]{\smash{$x$}}}%
|
||||
\put(0.53242126,0.09488278){\color[rgb]{0,0,0}\makebox(0,0)[lb]{\smash{d}}}%
|
||||
\put(0.38673062,0.20421506){\color[rgb]{0,0,0}\makebox(0,0)[lb]{\smash{cellules photo-}}}%
|
||||
\put(0.52524212,0.16116078){\color[rgb]{0,0,0}\makebox(0,0)[lb]{\smash{électriques}}}%
|
||||
\end{picture}%
|
||||
\endgroup%
|
|
@ -0,0 +1,443 @@
|
|||
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||||
<!-- Created with Inkscape (http://www.inkscape.org/) -->
|
||||
|
||||
<svg
|
||||
xmlns:dc="http://purl.org/dc/elements/1.1/"
|
||||
xmlns:cc="http://creativecommons.org/ns#"
|
||||
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
|
||||
xmlns:svg="http://www.w3.org/2000/svg"
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
|
||||
xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
|
||||
version="1.1"
|
||||
id="svg2"
|
||||
xml:space="preserve"
|
||||
width="197.58667"
|
||||
height="95.013336"
|
||||
viewBox="0 0 197.58667 95.013336"
|
||||
sodipodi:docname="RailHorizontal2.svg"
|
||||
inkscape:version="0.92.1 r15371"><metadata
|
||||
id="metadata8"><rdf:RDF><cc:Work
|
||||
rdf:about=""><dc:format>image/svg+xml</dc:format><dc:type
|
||||
rdf:resource="http://purl.org/dc/dcmitype/StillImage" /><dc:title></dc:title></cc:Work></rdf:RDF></metadata><defs
|
||||
id="defs6"><marker
|
||||
inkscape:stockid="Arrow1Mend"
|
||||
orient="auto"
|
||||
refY="0.0"
|
||||
refX="0.0"
|
||||
id="marker6231"
|
||||
style="overflow:visible;"
|
||||
inkscape:isstock="true"><path
|
||||
id="path5933"
|
||||
d="M 0.0,0.0 L 5.0,-5.0 L -12.5,0.0 L 5.0,5.0 L 0.0,0.0 z "
|
||||
style="fill-rule:evenodd;stroke:#000000;stroke-width:1pt;stroke-opacity:1;fill:#000000;fill-opacity:1"
|
||||
transform="scale(0.4) rotate(180) translate(10,0)" /></marker><marker
|
||||
inkscape:stockid="Arrow1Mstart"
|
||||
orient="auto"
|
||||
refY="0.0"
|
||||
refX="0.0"
|
||||
id="Arrow1Mstart"
|
||||
style="overflow:visible"
|
||||
inkscape:isstock="true"><path
|
||||
id="path5930"
|
||||
d="M 0.0,0.0 L 5.0,-5.0 L -12.5,0.0 L 5.0,5.0 L 0.0,0.0 z "
|
||||
style="fill-rule:evenodd;stroke:#000000;stroke-width:1pt;stroke-opacity:1;fill:#000000;fill-opacity:1"
|
||||
transform="scale(0.4) translate(10,0)" /></marker><marker
|
||||
inkscape:stockid="Arrow1Send"
|
||||
orient="auto"
|
||||
refY="0.0"
|
||||
refX="0.0"
|
||||
id="Arrow1Send"
|
||||
style="overflow:visible;"
|
||||
inkscape:isstock="true"><path
|
||||
id="path1310"
|
||||
d="M 0.0,0.0 L 5.0,-5.0 L -12.5,0.0 L 5.0,5.0 L 0.0,0.0 z "
|
||||
style="fill-rule:evenodd;stroke:#000000;stroke-width:1pt;stroke-opacity:1;fill:#000000;fill-opacity:1"
|
||||
transform="scale(0.2) rotate(180) translate(6,0)" /></marker><marker
|
||||
inkscape:stockid="Arrow1Mend"
|
||||
orient="auto"
|
||||
refY="0.0"
|
||||
refX="0.0"
|
||||
id="Arrow1Mend"
|
||||
style="overflow:visible;"
|
||||
inkscape:isstock="true"><path
|
||||
id="path1304"
|
||||
d="M 0.0,0.0 L 5.0,-5.0 L -12.5,0.0 L 5.0,5.0 L 0.0,0.0 z "
|
||||
style="fill-rule:evenodd;stroke:#000000;stroke-width:1pt;stroke-opacity:1;fill:#000000;fill-opacity:1"
|
||||
transform="scale(0.4) rotate(180) translate(10,0)" /></marker><marker
|
||||
inkscape:stockid="Arrow1Sstart"
|
||||
orient="auto"
|
||||
refY="0.0"
|
||||
refX="0.0"
|
||||
id="Arrow1Sstart"
|
||||
style="overflow:visible"
|
||||
inkscape:isstock="true"><path
|
||||
id="path1307"
|
||||
d="M 0.0,0.0 L 5.0,-5.0 L -12.5,0.0 L 5.0,5.0 L 0.0,0.0 z "
|
||||
style="fill-rule:evenodd;stroke:#000000;stroke-width:1pt;stroke-opacity:1;fill:#000000;fill-opacity:1"
|
||||
transform="scale(0.2) translate(6,0)" /></marker></defs><sodipodi:namedview
|
||||
pagecolor="#ffffff"
|
||||
bordercolor="#666666"
|
||||
borderopacity="1"
|
||||
objecttolerance="10"
|
||||
gridtolerance="10"
|
||||
guidetolerance="10"
|
||||
inkscape:pageopacity="0"
|
||||
inkscape:pageshadow="2"
|
||||
inkscape:window-width="1400"
|
||||
inkscape:window-height="995"
|
||||
id="namedview4"
|
||||
showgrid="false"
|
||||
inkscape:zoom="4.6451498"
|
||||
inkscape:cx="89.206644"
|
||||
inkscape:cy="47.376375"
|
||||
inkscape:window-x="0"
|
||||
inkscape:window-y="0"
|
||||
inkscape:window-maximized="1"
|
||||
inkscape:current-layer="g10" /><g
|
||||
id="g10"
|
||||
inkscape:groupmode="layer"
|
||||
inkscape:label="ink_ext_XXXXXX"
|
||||
transform="matrix(1.3333333,0,0,-1.3333333,0,95.013333)"
|
||||
style="display:inline"><path
|
||||
inkscape:connector-curvature="0"
|
||||
id="path14"
|
||||
style="fill:#ffffff;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.1"
|
||||
d="M 0.141797,20.3359 H 148.038 V 14.8953 H 0.141797 v 5.4406" /><path
|
||||
inkscape:connector-curvature="0"
|
||||
id="path16"
|
||||
style="fill:none;stroke:#030303;stroke-width:0.283465;stroke-linecap:round;stroke-linejoin:bevel;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1"
|
||||
d="M 1.5654608,20.335901 H 146.4957 V 9.2442452 H 1.5654608 Z" /><path
|
||||
inkscape:connector-curvature="0"
|
||||
id="path18"
|
||||
style="fill:#ffffff;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.1"
|
||||
d="m 51.5402,41.8113 h 3.4364 V 26.2059 h -3.4364 v 15.6054" /><path
|
||||
inkscape:connector-curvature="0"
|
||||
id="path20"
|
||||
style="fill:none;stroke:#030303;stroke-width:0.283465;stroke-linecap:round;stroke-linejoin:bevel;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1"
|
||||
d="m 51.5402,41.8113 h 3.4364 V 26.2059 h -3.4364 z" /><path
|
||||
inkscape:connector-curvature="0"
|
||||
id="path22"
|
||||
style="fill:#ffffff;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.1"
|
||||
d="m 52.6859,26.2059 h 1.2883 v -5.87 h -1.2883 v 5.87" /><path
|
||||
inkscape:connector-curvature="0"
|
||||
id="path24"
|
||||
style="fill:none;stroke:#030303;stroke-width:0.283465;stroke-linecap:round;stroke-linejoin:bevel;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1"
|
||||
d="m 52.6859,26.2059 h 1.2883 v -5.87 h -1.2883 z" /><path
|
||||
inkscape:connector-curvature="0"
|
||||
id="path26"
|
||||
style="fill:#817e7e;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.1"
|
||||
d="m 52.3574,28.3105 c 0.016,0.5 0.4324,0.8926 0.9297,0.8766 0.4973,-0.016 0.8883,-0.4344 0.8723,-0.9344 -0.016,-0.4996 -0.4324,-0.8925 -0.9297,-0.8765 -0.4871,0.0156 -0.8727,0.4156 -0.8727,0.9054" /><g
|
||||
transform="scale(0.105106,-0.0948942)"
|
||||
id="g28"><path
|
||||
inkscape:connector-curvature="0"
|
||||
id="path30"
|
||||
style="fill:none;stroke:#030303;stroke-width:0.527897;stroke-linecap:round;stroke-linejoin:bevel;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1"
|
||||
d="m 498.14,-298.338 c 0.153,-5.269 4.114,-9.406 8.845,-9.237 4.732,0.169 8.452,4.577 8.299,9.846 -0.152,5.265 -4.114,9.406 -8.845,9.237 -4.634,-0.164 -8.303,-4.379 -8.303,-9.541" /></g><path
|
||||
inkscape:connector-curvature="0"
|
||||
id="path32"
|
||||
style="fill:#ffffff;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.1"
|
||||
d="m 107.807,41.8113 h 3.436 V 26.2059 h -3.436 v 15.6054" /><path
|
||||
inkscape:connector-curvature="0"
|
||||
id="path34"
|
||||
style="fill:none;stroke:#030303;stroke-width:0.283465;stroke-linecap:round;stroke-linejoin:bevel;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1"
|
||||
d="m 107.807,41.8113 h 3.436 V 26.2059 h -3.436 z" /><path
|
||||
inkscape:connector-curvature="0"
|
||||
id="path36"
|
||||
style="fill:#ffffff;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.1"
|
||||
d="m 108.952,26.2059 h 1.289 v -5.87 h -1.289 v 5.87" /><path
|
||||
inkscape:connector-curvature="0"
|
||||
id="path38"
|
||||
style="fill:none;stroke:#030303;stroke-width:0.283465;stroke-linecap:round;stroke-linejoin:bevel;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1"
|
||||
d="m 108.952,26.2059 h 1.289 v -5.87 h -1.289 z" /><path
|
||||
inkscape:connector-curvature="0"
|
||||
id="path40"
|
||||
style="fill:#817e7e;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.1"
|
||||
d="m 108.624,28.3105 c 0.016,0.5 0.432,0.8926 0.93,0.8766 0.497,-0.016 0.888,-0.4344 0.872,-0.9344 -0.016,-0.4996 -0.433,-0.8925 -0.93,-0.8765 -0.487,0.0156 -0.873,0.4156 -0.873,0.9054" /><g
|
||||
transform="scale(0.105106,-0.0948942)"
|
||||
id="g42"><path
|
||||
inkscape:connector-curvature="0"
|
||||
id="path44"
|
||||
style="fill:none;stroke:#030303;stroke-width:0.527897;stroke-linecap:round;stroke-linejoin:bevel;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1"
|
||||
d="m 1033.47,-298.338 c 0.15,-5.269 4.12,-9.406 8.85,-9.237 4.73,0.169 8.45,4.577 8.3,9.846 -0.15,5.265 -4.12,9.406 -8.85,9.237 -4.63,-0.164 -8.3,-4.379 -8.3,-9.541" /></g><path
|
||||
inkscape:connector-curvature="0"
|
||||
id="path46"
|
||||
style="fill:#817e7e;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.1"
|
||||
d="M 21.9039,26.2059 H 36.2211 V 22.7695 H 21.9039 v 3.4364" /><path
|
||||
inkscape:connector-curvature="0"
|
||||
id="path48"
|
||||
style="fill:none;stroke:#030303;stroke-width:0.226772;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1"
|
||||
d="M 21.9039,26.2059 H 36.2211 V 22.7695 H 21.9039 Z" /><path
|
||||
inkscape:connector-curvature="0"
|
||||
id="path50"
|
||||
style="fill:#817e7e;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.1"
|
||||
d="m 23.193,21.7301 c 0.0187,0.5926 0.5152,1.0578 1.1074,1.039 0.5926,-0.0187 1.0578,-0.5152 1.0391,-1.1074 -0.0188,-0.5926 -0.5153,-1.0578 -1.1075,-1.039 -0.5804,0.0183 -1.0394,0.4925 -1.0394,1.073" /><path
|
||||
inkscape:connector-curvature="0"
|
||||
id="path52"
|
||||
style="fill:none;stroke:#030303;stroke-width:0.226772;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1"
|
||||
d="m 23.193,21.7301 c 0.0187,0.5926 0.5152,1.0578 1.1074,1.039 0.5926,-0.0187 1.0578,-0.5152 1.0391,-1.1074 -0.0188,-0.5926 -0.5153,-1.0578 -1.1075,-1.039 -0.5804,0.0183 -1.0394,0.4925 -1.0394,1.073" /><path
|
||||
inkscape:connector-curvature="0"
|
||||
id="path54"
|
||||
style="fill:#817e7e;fill-opacity:1;fill-rule:evenodd;stroke:none;stroke-width:0.1"
|
||||
d="m 32.6422,21.7301 c 0.0191,0.5926 0.5152,1.0578 1.1074,1.039 0.5926,-0.0187 1.0582,-0.5152 1.0391,-1.1074 -0.0188,-0.5926 -0.5149,-1.0578 -1.1074,-1.039 -0.5805,0.0183 -1.0395,0.4925 -1.0395,1.073" /><path
|
||||
inkscape:connector-curvature="0"
|
||||
id="path56"
|
||||
style="fill:none;stroke:#030303;stroke-width:0.226772;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1"
|
||||
d="m 32.6422,21.7301 c 0.0191,0.5926 0.5152,1.0578 1.1074,1.039 0.5926,-0.0187 1.0582,-0.5152 1.0391,-1.1074 -0.0188,-0.5926 -0.5149,-1.0578 -1.1074,-1.039 -0.5805,0.0183 -1.0395,0.4925 -1.0395,1.073" /><path
|
||||
inkscape:connector-curvature="0"
|
||||
id="path58"
|
||||
style="fill:none;stroke:#000000;stroke-width:0.226772;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1"
|
||||
d="M 23.4789,30.6441 H 34.5031 V 26.3488 H 23.4789 Z" /><g
|
||||
id="g5039"
|
||||
transform="translate(0,8.2343956)"><path
|
||||
d="M 74.7344,61.9988 H 87.9059 V 44.5316 H 74.7344 Z"
|
||||
style="fill:none;stroke:#000000;stroke-width:0.226772;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1"
|
||||
id="path60"
|
||||
inkscape:connector-curvature="0" /><path
|
||||
d="m 76.3809,59.7078 h 9.8789 v -5.1539 h -9.8789 z"
|
||||
style="fill:none;stroke:#000000;stroke-width:0.226772;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1"
|
||||
id="path62"
|
||||
inkscape:connector-curvature="0" /></g><path
|
||||
inkscape:connector-curvature="0"
|
||||
id="path64"
|
||||
style="fill:none;stroke:#000000;stroke-width:0.283465;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1"
|
||||
d="m 74.591,54.693843 c 0,0 -21.3324,1.438438 -21.3324,-12.739142" /><path
|
||||
inkscape:connector-curvature="0"
|
||||
id="path66"
|
||||
style="fill:none;stroke:#000000;stroke-width:0.283465;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1"
|
||||
d="m 88.0492,54.854781 c 0,0 21.3328,1.456611 21.3328,-12.900081" /><path
|
||||
inkscape:connector-curvature="0"
|
||||
id="path154"
|
||||
style="fill:none;stroke:#000000;stroke-width:0.283465;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1"
|
||||
d="M 25.4336,30.616 25.443,28.0164" /><path
|
||||
inkscape:connector-curvature="0"
|
||||
id="path156"
|
||||
style="fill:none;stroke:#000000;stroke-width:0.283465;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1"
|
||||
d="M 32.5387,30.6063 32.5484,28.007" /><path
|
||||
inkscape:connector-curvature="0"
|
||||
id="path158"
|
||||
style="fill:none;stroke:#000000;stroke-width:0.283465;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1"
|
||||
d="M 28.9859,30.6063 28.9957,28.007" /><path
|
||||
inkscape:connector-curvature="0"
|
||||
id="path160"
|
||||
style="fill:none;stroke:#000000;stroke-width:0.276245;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1"
|
||||
d="M 27.2063,30.6098 27.223,29.2082" /><path
|
||||
inkscape:connector-curvature="0"
|
||||
id="path162"
|
||||
style="fill:none;stroke:#000000;stroke-width:0.276245;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1"
|
||||
d="m 30.759,30.6098 0.0164,-1.4016" /><path
|
||||
inkscape:connector-curvature="0"
|
||||
id="path164"
|
||||
style="fill:none;stroke:#000000;stroke-width:0.283465;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1"
|
||||
d="M 1.51367,25.7984 H 9.13555 V 22.5496 H 1.51367 Z" /><path
|
||||
inkscape:connector-curvature="0"
|
||||
id="path166"
|
||||
style="fill:none;stroke:#000000;stroke-width:0.28647202;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1"
|
||||
d="M 2.44961,22.5371 H 8.25313 V 20.3344 H 2.44961 Z" /><path
|
||||
inkscape:connector-curvature="0"
|
||||
id="path168"
|
||||
style="fill:none;stroke:#000000;stroke-width:0.226772;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:10;stroke-dasharray:0.680315, 0.680315;stroke-dashoffset:0;stroke-opacity:1"
|
||||
d="M 4.33945,24.7914 H 12.4461 V 23.6789 H 4.33945 Z" /><path
|
||||
inkscape:connector-curvature="0"
|
||||
id="path248"
|
||||
style="fill:none;stroke:#000000;stroke-width:0.27744299;stroke-linecap:round;stroke-linejoin:round;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1"
|
||||
d="M 9.11523,24.773 H 12.4535 V 23.659 H 9.11523 Z" /><path
|
||||
inkscape:connector-curvature="0"
|
||||
id="path250"
|
||||
style="fill:none;stroke:#000000;stroke-width:0.283465;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1"
|
||||
d="M 44.2465,20.1758 V 16.802" /><path
|
||||
inkscape:connector-curvature="0"
|
||||
id="path252"
|
||||
style="fill:none;stroke:#000000;stroke-width:0.283465;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1"
|
||||
d="M 53.5621,20.1758 V 16.802" /><path
|
||||
inkscape:connector-curvature="0"
|
||||
id="path254"
|
||||
style="fill:none;stroke:#000000;stroke-width:0.283465;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1"
|
||||
d="M 128.088,20.1758 V 16.802" /><path
|
||||
inkscape:connector-curvature="0"
|
||||
id="path256"
|
||||
style="fill:none;stroke:#000000;stroke-width:0.283465;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1"
|
||||
d="M 62.8777,20.1758 V 16.802" /><path
|
||||
inkscape:connector-curvature="0"
|
||||
id="path258"
|
||||
style="fill:none;stroke:#000000;stroke-width:0.283465;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1"
|
||||
d="M 72.1934,20.1758 V 16.802" /><path
|
||||
inkscape:connector-curvature="0"
|
||||
id="path260"
|
||||
style="fill:none;stroke:#000000;stroke-width:0.283465;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1"
|
||||
d="M 81.509,20.1758 V 16.802" /><path
|
||||
inkscape:connector-curvature="0"
|
||||
id="path262"
|
||||
style="fill:none;stroke:#000000;stroke-width:0.283465;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1"
|
||||
d="M 90.825,20.1758 V 16.802" /><path
|
||||
inkscape:connector-curvature="0"
|
||||
id="path264"
|
||||
style="fill:none;stroke:#000000;stroke-width:0.283465;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1"
|
||||
d="M 100.141,20.1758 V 16.802" /><path
|
||||
inkscape:connector-curvature="0"
|
||||
id="path266"
|
||||
style="fill:none;stroke:#000000;stroke-width:0.283465;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1"
|
||||
d="M 109.456,20.1758 V 16.802" /><path
|
||||
inkscape:connector-curvature="0"
|
||||
id="path268"
|
||||
style="fill:none;stroke:#000000;stroke-width:0.283465;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1"
|
||||
d="M 118.772,20.1758 V 16.802" /><path
|
||||
inkscape:connector-curvature="0"
|
||||
id="path270"
|
||||
style="fill:none;stroke:#000000;stroke-width:0.20473799;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1"
|
||||
d="M 48.9043,20.2152 V 18.4551" /><path
|
||||
inkscape:connector-curvature="0"
|
||||
id="path272"
|
||||
style="fill:none;stroke:#000000;stroke-width:0.20473799;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1"
|
||||
d="M 58.2199,20.2152 V 18.4551" /><path
|
||||
inkscape:connector-curvature="0"
|
||||
id="path274"
|
||||
style="fill:none;stroke:#000000;stroke-width:0.20473799;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1"
|
||||
d="M 67.5355,20.2152 V 18.4551" /><path
|
||||
inkscape:connector-curvature="0"
|
||||
id="path276"
|
||||
style="fill:none;stroke:#000000;stroke-width:0.20473799;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1"
|
||||
d="M 76.8512,20.2152 V 18.4551" /><path
|
||||
inkscape:connector-curvature="0"
|
||||
id="path278"
|
||||
style="fill:none;stroke:#000000;stroke-width:0.20473799;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1"
|
||||
d="M 86.1672,20.2152 V 18.4551" /><path
|
||||
inkscape:connector-curvature="0"
|
||||
id="path280"
|
||||
style="fill:none;stroke:#000000;stroke-width:0.20473799;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1"
|
||||
d="M 95.4828,20.2152 V 18.4551" /><path
|
||||
inkscape:connector-curvature="0"
|
||||
id="path282"
|
||||
style="fill:none;stroke:#000000;stroke-width:0.20473799;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1"
|
||||
d="M 104.798,20.2152 V 18.4551" /><path
|
||||
inkscape:connector-curvature="0"
|
||||
id="path284"
|
||||
style="fill:none;stroke:#000000;stroke-width:0.20473799;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1"
|
||||
d="M 114.114,20.2152 V 18.4551" /><path
|
||||
inkscape:connector-curvature="0"
|
||||
id="path286"
|
||||
style="fill:none;stroke:#000000;stroke-width:0.20473799;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:10;stroke-dasharray:none;stroke-opacity:1"
|
||||
d="M 123.43,20.2152 V 18.4551" /><text
|
||||
xml:space="preserve"
|
||||
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:11.00000095px;line-height:1.25;font-family:OpenSymbol;-inkscape-font-specification:OpenSymbol;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;stroke-width:0.75"
|
||||
x="39.937992"
|
||||
y="-58.594257"
|
||||
id="text427"
|
||||
transform="scale(1,-1)"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan425"
|
||||
x="39.937992"
|
||||
y="-58.594257"
|
||||
style="font-size:8px;stroke-width:0.75">chronomètre</tspan></text>
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:11.00000095px;line-height:1.25;font-family:OpenSymbol;-inkscape-font-specification:OpenSymbol;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;stroke-width:0.75"
|
||||
x="28.478106"
|
||||
y="6.5607023"
|
||||
id="text431"
|
||||
transform="matrix(0,1,1,0,0,0)"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan429"
|
||||
x="28.478106"
|
||||
y="6.5607023"
|
||||
style="font-size:8px;stroke-width:0.75">propulseur</tspan></text>
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:11.00000095px;line-height:1.25;font-family:OpenSymbol;-inkscape-font-specification:OpenSymbol;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;stroke-width:0.75"
|
||||
x="19.793327"
|
||||
y="-33.939217"
|
||||
id="text435"
|
||||
transform="scale(1,-1)"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan433"
|
||||
x="19.793327"
|
||||
y="-33.939217"
|
||||
style="font-size:8px;stroke-width:0.75">chariot</tspan></text>
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:11.00000095px;line-height:1.25;font-family:OpenSymbol;-inkscape-font-specification:OpenSymbol;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;stroke-width:0.75"
|
||||
x="80.082466"
|
||||
y="-64.824974"
|
||||
id="text439"
|
||||
transform="scale(1,-1)"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan437"
|
||||
x="80.082466"
|
||||
y="-64.824974"
|
||||
style="font-size:8px;stroke-width:0.75">t</tspan></text>
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:8px;line-height:1.25;font-family:OpenSymbol;-inkscape-font-specification:OpenSymbol;font-variant-ligatures:normal;font-variant-position:normal;font-variant-caps:normal;font-variant-numeric:normal;font-variant-alternates:normal;font-feature-settings:normal;text-indent:0;text-align:center;text-decoration:none;text-decoration-line:none;text-decoration-style:solid;text-decoration-color:#000000;letter-spacing:0px;word-spacing:0px;text-transform:none;writing-mode:lr-tb;direction:ltr;text-orientation:mixed;dominant-baseline:auto;baseline-shift:baseline;text-anchor:middle;white-space:normal;shape-padding:0;opacity:1;vector-effect:none;fill:#000000;fill-opacity:1;stroke:none;stroke-width:0.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1"
|
||||
x="53.549751"
|
||||
y="-12.361399"
|
||||
id="text451"
|
||||
transform="scale(1,-1)"><tspan
|
||||
sodipodi:role="line"
|
||||
x="53.549751"
|
||||
y="-12.361399"
|
||||
style="font-size:8px;text-align:center;text-anchor:middle;stroke-width:0.75"
|
||||
id="tspan453">$x_0$</tspan></text>
|
||||
<flowRoot
|
||||
xml:space="preserve"
|
||||
id="flowRoot455"
|
||||
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:10.66666698px;line-height:1.25;font-family:OpenSymbol;-inkscape-font-specification:OpenSymbol;font-variant-ligatures:normal;font-variant-position:normal;font-variant-caps:normal;font-variant-numeric:normal;font-variant-alternates:normal;font-feature-settings:normal;text-indent:0;text-align:start;text-decoration:none;text-decoration-line:none;text-decoration-style:solid;text-decoration-color:#000000;letter-spacing:0px;word-spacing:0px;text-transform:none;writing-mode:lr-tb;direction:ltr;text-orientation:mixed;dominant-baseline:auto;baseline-shift:baseline;text-anchor:start;white-space:normal;shape-padding:0;opacity:1;vector-effect:none;fill:#000000;fill-opacity:1;stroke:none;stroke-width:1;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1"><flowRegion
|
||||
id="flowRegion457"><rect
|
||||
id="rect459"
|
||||
width="34.486687"
|
||||
height="15.819582"
|
||||
x="55.684929"
|
||||
y="78.402779" /></flowRegion><flowPara
|
||||
id="flowPara461" /></flowRoot><text
|
||||
xml:space="preserve"
|
||||
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:7.99999952px;line-height:1.25;font-family:OpenSymbol;-inkscape-font-specification:OpenSymbol;font-variant-ligatures:normal;font-variant-position:normal;font-variant-caps:normal;font-variant-numeric:normal;font-variant-alternates:normal;font-feature-settings:normal;text-indent:0;text-align:center;text-decoration:none;text-decoration-line:none;text-decoration-style:solid;text-decoration-color:#000000;letter-spacing:0px;word-spacing:0px;text-transform:none;writing-mode:lr-tb;direction:ltr;text-orientation:mixed;dominant-baseline:auto;baseline-shift:baseline;text-anchor:middle;white-space:normal;shape-padding:0;opacity:1;vector-effect:none;fill:#000000;fill-opacity:1;stroke:none;stroke-width:0.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1"
|
||||
x="109.68331"
|
||||
y="-12.090394"
|
||||
id="text451-3"
|
||||
transform="scale(1,-1)"><tspan
|
||||
sodipodi:role="line"
|
||||
x="109.68331"
|
||||
y="-12.090394"
|
||||
style="font-size:7.99999952px;text-align:center;text-anchor:middle;stroke-width:0.75"
|
||||
id="tspan486">$x$</tspan></text>
|
||||
<path
|
||||
style="fill:none;stroke:#000000;stroke-width:0.37499997;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1;marker-start:url(#Arrow1Mstart);marker-end:url(#marker6231)"
|
||||
d="M 56.227731,28.429186 106.53336,28.3105"
|
||||
id="path488"
|
||||
inkscape:connector-curvature="0"
|
||||
sodipodi:nodetypes="cc" /><text
|
||||
xml:space="preserve"
|
||||
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:8px;line-height:1.25;font-family:OpenSymbol;-inkscape-font-specification:OpenSymbol;font-variant-ligatures:normal;font-variant-position:normal;font-variant-caps:normal;font-variant-numeric:normal;font-variant-alternates:normal;font-feature-settings:normal;text-indent:0;text-align:start;text-decoration:none;text-decoration-line:none;text-decoration-style:solid;text-decoration-color:#000000;letter-spacing:0px;word-spacing:0px;text-transform:none;writing-mode:lr-tb;direction:ltr;text-orientation:mixed;dominant-baseline:auto;baseline-shift:baseline;text-anchor:start;white-space:normal;shape-padding:0;opacity:1;vector-effect:none;fill:#000000;fill-opacity:1;stroke:none;stroke-width:0.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1"
|
||||
x="78.88488"
|
||||
y="-23.135315"
|
||||
id="text1745"
|
||||
transform="scale(1,-1)"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan1743"
|
||||
x="78.88488"
|
||||
y="-23.135315"
|
||||
style="font-size:8px;stroke-width:0.75">d</tspan></text>
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:8px;line-height:1.25;font-family:OpenSymbol;-inkscape-font-specification:OpenSymbol;font-variant-ligatures:normal;font-variant-position:normal;font-variant-caps:normal;font-variant-numeric:normal;font-variant-alternates:normal;font-feature-settings:normal;text-indent:0;text-align:start;text-decoration:none;text-decoration-line:none;text-decoration-style:solid;text-decoration-color:#000000;letter-spacing:0px;word-spacing:0px;text-transform:none;writing-mode:lr-tb;direction:ltr;text-orientation:mixed;dominant-baseline:auto;baseline-shift:baseline;text-anchor:start;white-space:normal;shape-padding:0;opacity:1;vector-effect:none;fill:#000000;fill-opacity:1;stroke:none;stroke-width:0.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1"
|
||||
x="57.337788"
|
||||
y="-39.305145"
|
||||
id="text173"
|
||||
transform="scale(1,-1)"><tspan
|
||||
sodipodi:role="line"
|
||||
x="57.337788"
|
||||
y="-39.305145"
|
||||
style="stroke-width:0.75"
|
||||
id="tspan5035">cellules photo-</tspan></text>
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:8px;line-height:1.25;font-family:OpenSymbol;-inkscape-font-specification:OpenSymbol;font-variant-ligatures:normal;font-variant-position:normal;font-variant-caps:normal;font-variant-numeric:normal;font-variant-alternates:normal;font-feature-settings:normal;text-indent:0;text-align:start;text-decoration:none;text-decoration-line:none;text-decoration-style:solid;text-decoration-color:#000000;letter-spacing:0px;word-spacing:0px;text-transform:none;writing-mode:lr-tb;direction:ltr;text-orientation:mixed;dominant-baseline:auto;baseline-shift:baseline;text-anchor:start;white-space:normal;shape-padding:0;opacity:1;vector-effect:none;fill:#000000;fill-opacity:1;stroke:none;stroke-width:0.75;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1"
|
||||
x="77.823112"
|
||||
y="-32.93758"
|
||||
id="text5064"
|
||||
transform="scale(1,-1)"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan5062"
|
||||
x="77.823112"
|
||||
y="-32.93758"
|
||||
style="stroke-width:0.75">électriques</tspan></text>
|
||||
</g></svg>
|
After Width: | Height: | Size: 29 KiB |
|
@ -0,0 +1,180 @@
|
|||
%!PS-Adobe-3.0 EPSF-3.0
|
||||
%%Creator: cairo 1.16.0 (https://cairographics.org)
|
||||
%%CreationDate: Sat Apr 10 19:31:32 2021
|
||||
%%Pages: 1
|
||||
%%DocumentData: Clean7Bit
|
||||
%%LanguageLevel: 2
|
||||
%%BoundingBox: 0 0 143 143
|
||||
%%EndComments
|
||||
%%BeginProlog
|
||||
50 dict begin
|
||||
/q { gsave } bind def
|
||||
/Q { grestore } bind def
|
||||
/cm { 6 array astore concat } bind def
|
||||
/w { setlinewidth } bind def
|
||||
/J { setlinecap } bind def
|
||||
/j { setlinejoin } bind def
|
||||
/M { setmiterlimit } bind def
|
||||
/d { setdash } bind def
|
||||
/m { moveto } bind def
|
||||
/l { lineto } bind def
|
||||
/c { curveto } bind def
|
||||
/h { closepath } bind def
|
||||
/re { exch dup neg 3 1 roll 5 3 roll moveto 0 rlineto
|
||||
0 exch rlineto 0 rlineto closepath } bind def
|
||||
/S { stroke } bind def
|
||||
/f { fill } bind def
|
||||
/f* { eofill } bind def
|
||||
/n { newpath } bind def
|
||||
/W { clip } bind def
|
||||
/W* { eoclip } bind def
|
||||
/BT { } bind def
|
||||
/ET { } bind def
|
||||
/BDC { mark 3 1 roll /BDC pdfmark } bind def
|
||||
/EMC { mark /EMC pdfmark } bind def
|
||||
/cairo_store_point { /cairo_point_y exch def /cairo_point_x exch def } def
|
||||
/Tj { show currentpoint cairo_store_point } bind def
|
||||
/TJ {
|
||||
{
|
||||
dup
|
||||
type /stringtype eq
|
||||
{ show } { -0.001 mul 0 cairo_font_matrix dtransform rmoveto } ifelse
|
||||
} forall
|
||||
currentpoint cairo_store_point
|
||||
} bind def
|
||||
/cairo_selectfont { cairo_font_matrix aload pop pop pop 0 0 6 array astore
|
||||
cairo_font exch selectfont cairo_point_x cairo_point_y moveto } bind def
|
||||
/Tf { pop /cairo_font exch def /cairo_font_matrix where
|
||||
{ pop cairo_selectfont } if } bind def
|
||||
/Td { matrix translate cairo_font_matrix matrix concatmatrix dup
|
||||
/cairo_font_matrix exch def dup 4 get exch 5 get cairo_store_point
|
||||
/cairo_font where { pop cairo_selectfont } if } bind def
|
||||
/Tm { 2 copy 8 2 roll 6 array astore /cairo_font_matrix exch def
|
||||
cairo_store_point /cairo_font where { pop cairo_selectfont } if } bind def
|
||||
/g { setgray } bind def
|
||||
/rg { setrgbcolor } bind def
|
||||
/d1 { setcachedevice } bind def
|
||||
/cairo_data_source {
|
||||
CairoDataIndex CairoData length lt
|
||||
{ CairoData CairoDataIndex get /CairoDataIndex CairoDataIndex 1 add def }
|
||||
{ () } ifelse
|
||||
} def
|
||||
/cairo_flush_ascii85_file { cairo_ascii85_file status { cairo_ascii85_file flushfile } if } def
|
||||
/cairo_image { image cairo_flush_ascii85_file } def
|
||||
/cairo_imagemask { imagemask cairo_flush_ascii85_file } def
|
||||
%%EndProlog
|
||||
%%BeginSetup
|
||||
%%EndSetup
|
||||
%%Page: 1 1
|
||||
%%BeginPageSetup
|
||||
%%PageBoundingBox: 0 0 143 143
|
||||
%%EndPageSetup
|
||||
q 0 0 143 143 rectclip
|
||||
1 0 0 -1 0 143 cm q
|
||||
0 g
|
||||
0.751181 w
|
||||
0 J
|
||||
0 j
|
||||
[] 0.0 d
|
||||
4 M q 1 0 0 1 0 0 cm
|
||||
0.375 0.375 77.625 10.004 re S Q
|
||||
q 0 -1 1 0 0 0 cm
|
||||
-142.621 132.02 m -64.996 132.02 l -64.996 142.02 l -142.621 142.02 l h
|
||||
-142.621 132.02 m S Q
|
||||
0.721569 0.737255 0 rg
|
||||
q 1 0 0 1 0 0 cm
|
||||
58.395 119.414 m 42.492 107.492 l 52.633 124.586 l 41.195 108.332 l 45.555
|
||||
127.723 l 39.699 108.73 l 37.852 128.52 l 38.152 108.648 l 30.281 126.898
|
||||
l 36.707 108.09 l 23.582 123.016 l 35.504 107.113 l 18.41 117.254 l 34.664
|
||||
105.816 l 15.273 110.176 l 34.266 104.316 l 14.477 102.473 l 34.348 102.773
|
||||
l 16.102 94.902 l 34.906 101.328 l 19.98 88.203 l 35.883 100.125 l 25.742
|
||||
83.031 l 37.184 99.285 l 32.824 79.895 l 38.68 98.887 l 40.523 79.098 l
|
||||
40.227 98.969 l 48.094 80.719 l 41.668 99.527 l 54.793 84.602 l 42.871
|
||||
100.504 l 59.965 90.363 l 43.711 101.805 l 63.102 97.441 l 44.109 103.301
|
||||
l 63.898 105.145 l 44.027 104.848 l 62.277 112.715 l 43.469 106.289 l h
|
||||
58.395 119.414 m S Q
|
||||
0.861803 w
|
||||
q 1 0 0 1 0 0 cm
|
||||
39.324 103.477 m 39.324 13.555 l S Q
|
||||
41.41 98.969 m 39.332 104.617 l 37.254 98.969 l 38.48 99.871 40.16 99.867
|
||||
41.41 98.969 c h
|
||||
41.41 98.969 m f*
|
||||
0.323176 w
|
||||
1 j
|
||||
q 0 -1 1 0 0 0 cm
|
||||
-98.969 41.41 m -104.617 39.332 l -98.969 37.254 l -99.871 38.48 -99.867
|
||||
40.16 -98.969 41.41 c h
|
||||
-98.969 41.41 m S Q
|
||||
39.324 17.004 m 41.047 18.727 l 39.324 12.691 l 37.602 18.727 l h
|
||||
39.324 17.004 m f*
|
||||
0.459628 w
|
||||
0 j
|
||||
q 0 1 -1 0 0 0 cm
|
||||
17.004 -39.324 m 18.727 -41.047 l 12.691 -39.324 l 18.727 -37.602 l h
|
||||
17.004 -39.324 m S Q
|
||||
0.861803 w
|
||||
q 1 0 0 1 0 0 cm
|
||||
39.324 103.477 m 129.246 103.477 l S Q
|
||||
43.832 105.562 m 38.184 103.484 l 43.832 101.41 l 42.93 102.637 42.934
|
||||
104.312 43.832 105.562 c h
|
||||
43.832 105.562 m f*
|
||||
0.323176 w
|
||||
1 j
|
||||
q 1 0 0 1 0 0 cm
|
||||
43.832 105.562 m 38.184 103.484 l 43.832 101.41 l 42.93 102.637 42.934
|
||||
104.312 43.832 105.562 c h
|
||||
43.832 105.562 m S Q
|
||||
125.801 103.477 m 124.074 105.203 l 130.109 103.477 l 124.074 101.754 l
|
||||
h
|
||||
125.801 103.477 m f*
|
||||
0.459628 w
|
||||
0 j
|
||||
q -1 0 0 -1 0 0 cm
|
||||
-125.801 -103.477 m -124.074 -105.203 l -130.109 -103.477 l -124.074 -101.754
|
||||
l h
|
||||
-125.801 -103.477 m S Q
|
||||
0 g
|
||||
0.75 w
|
||||
q 1 0 0 1 0 0 cm
|
||||
7.379 12.98 m 7.379 101.609 l S Q
|
||||
5.562 16.902 m 7.371 11.988 l 9.18 16.902 l 8.109 16.117 6.652 16.121 5.562
|
||||
16.902 c h
|
||||
5.562 16.902 m f*
|
||||
0.28125 w
|
||||
1 j
|
||||
q 0 1 -1 0 0 0 cm
|
||||
16.902 -5.562 m 11.988 -7.371 l 16.902 -9.18 l 16.117 -8.109 16.121 -6.652
|
||||
16.902 -5.562 c h
|
||||
16.902 -5.562 m S Q
|
||||
9.191 97.684 m 7.387 102.602 l 5.578 97.684 l 6.645 98.469 8.105 98.465
|
||||
9.191 97.684 c h
|
||||
9.191 97.684 m f*
|
||||
q 0 -1 1 0 0 0 cm
|
||||
-97.684 9.191 m -102.602 7.387 l -97.684 5.578 l -98.469 6.645 -98.465
|
||||
8.105 -97.684 9.191 c h
|
||||
-97.684 9.191 m S Q
|
||||
0.75 w
|
||||
0 j
|
||||
q 1 0 0 1 0 0 cm
|
||||
129.316 138.52 m 40.688 138.52 l S Q
|
||||
125.395 136.703 m 130.309 138.512 l 125.395 140.32 l 126.18 139.254 126.176
|
||||
137.793 125.395 136.703 c h
|
||||
125.395 136.703 m f*
|
||||
0.28125 w
|
||||
1 j
|
||||
q -1 0 0 -1 0 0 cm
|
||||
-125.395 -136.703 m -130.309 -138.512 l -125.395 -140.32 l -126.18 -139.254
|
||||
-126.176 -137.793 -125.395 -136.703 c h
|
||||
-125.395 -136.703 m S Q
|
||||
44.613 140.336 m 39.695 138.527 l 44.613 136.719 l 43.828 137.785 43.832
|
||||
139.246 44.613 140.336 c h
|
||||
44.613 140.336 m f*
|
||||
q 1 0 0 1 0 0 cm
|
||||
44.613 140.336 m 39.695 138.527 l 44.613 136.719 l 43.828 137.785 43.832
|
||||
139.246 44.613 140.336 c h
|
||||
44.613 140.336 m S Q
|
||||
Q Q
|
||||
showpage
|
||||
%%Trailer
|
||||
end
|
||||
%%EOF
|
|
@ -0,0 +1,63 @@
|
|||
%% Creator: Inkscape inkscape 0.92.4, www.inkscape.org
|
||||
%% PDF/EPS/PS + LaTeX output extension by Johan Engelen, 2010
|
||||
%% Accompanies image file 'MichelsonMorley.eps' (pdf, eps, ps)
|
||||
%%
|
||||
%% To include the image in your LaTeX document, write
|
||||
%% \input{<filename>.pdf_tex}
|
||||
%% instead of
|
||||
%% \includegraphics{<filename>.pdf}
|
||||
%% To scale the image, write
|
||||
%% \def\svgwidth{<desired width>}
|
||||
%% \input{<filename>.pdf_tex}
|
||||
%% instead of
|
||||
%% \includegraphics[width=<desired width>]{<filename>.pdf}
|
||||
%%
|
||||
%% Images with a different path to the parent latex file can
|
||||
%% be accessed with the `import' package (which may need to be
|
||||
%% installed) using
|
||||
%% \usepackage{import}
|
||||
%% in the preamble, and then including the image with
|
||||
%% \import{<path to file>}{<filename>.pdf_tex}
|
||||
%% Alternatively, one can specify
|
||||
%% \graphicspath{{<path to file>/}}
|
||||
%%
|
||||
%% For more information, please see info/svg-inkscape on CTAN:
|
||||
%% http://tug.ctan.org/tex-archive/info/svg-inkscape
|
||||
%%
|
||||
\begingroup%
|
||||
\makeatletter%
|
||||
\providecommand\color[2][]{%
|
||||
\errmessage{(Inkscape) Color is used for the text in Inkscape, but the package 'color.sty' is not loaded}%
|
||||
\renewcommand\color[2][]{}%
|
||||
}%
|
||||
\providecommand\transparent[1]{%
|
||||
\errmessage{(Inkscape) Transparency is used (non-zero) for the text in Inkscape, but the package 'transparent.sty' is not loaded}%
|
||||
\renewcommand\transparent[1]{}%
|
||||
}%
|
||||
\providecommand\rotatebox[2]{#2}%
|
||||
\newcommand*\fsize{\dimexpr\f@size pt\relax}%
|
||||
\newcommand*\lineheight[1]{\fontsize{\fsize}{#1\fsize}\selectfont}%
|
||||
\ifx\svgwidth\undefined%
|
||||
\setlength{\unitlength}{142.39669781bp}%
|
||||
\ifx\svgscale\undefined%
|
||||
\relax%
|
||||
\else%
|
||||
\setlength{\unitlength}{\unitlength * \real{\svgscale}}%
|
||||
\fi%
|
||||
\else%
|
||||
\setlength{\unitlength}{\svgwidth}%
|
||||
\fi%
|
||||
\global\let\svgwidth\undefined%
|
||||
\global\let\svgscale\undefined%
|
||||
\makeatother%
|
||||
\begin{picture}(1,1.00421487)%
|
||||
\lineheight{1}%
|
||||
\setlength\tabcolsep{0pt}%
|
||||
\put(0,0){\includegraphics[width=\unitlength]{images/eps/MichelsonMorley.eps}}%
|
||||
\put(0.34264242,0.81190516){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}Miroir A\end{tabular}}}}%
|
||||
\put(0.56603398,0.58008372){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}Miroir B\end{tabular}}}}%
|
||||
\put(0.08553136,0.6362829){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}L\end{tabular}}}}%
|
||||
\put(0.58008372,0.06586176){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}L\end{tabular}}}}%
|
||||
\put(0.39884152,0.46066064){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}Source\\de lumière\end{tabular}}}}%
|
||||
\end{picture}%
|
||||
\endgroup%
|
|
@ -0,0 +1,159 @@
|
|||
%!PS-Adobe-3.0 EPSF-3.0
|
||||
%%Creator: cairo 1.16.0 (https://cairographics.org)
|
||||
%%CreationDate: Sat Apr 17 17:15:32 2021
|
||||
%%Pages: 1
|
||||
%%DocumentData: Clean7Bit
|
||||
%%LanguageLevel: 2
|
||||
%%BoundingBox: 0 0 214 213
|
||||
%%EndComments
|
||||
%%BeginProlog
|
||||
50 dict begin
|
||||
/q { gsave } bind def
|
||||
/Q { grestore } bind def
|
||||
/cm { 6 array astore concat } bind def
|
||||
/w { setlinewidth } bind def
|
||||
/J { setlinecap } bind def
|
||||
/j { setlinejoin } bind def
|
||||
/M { setmiterlimit } bind def
|
||||
/d { setdash } bind def
|
||||
/m { moveto } bind def
|
||||
/l { lineto } bind def
|
||||
/c { curveto } bind def
|
||||
/h { closepath } bind def
|
||||
/re { exch dup neg 3 1 roll 5 3 roll moveto 0 rlineto
|
||||
0 exch rlineto 0 rlineto closepath } bind def
|
||||
/S { stroke } bind def
|
||||
/f { fill } bind def
|
||||
/f* { eofill } bind def
|
||||
/n { newpath } bind def
|
||||
/W { clip } bind def
|
||||
/W* { eoclip } bind def
|
||||
/BT { } bind def
|
||||
/ET { } bind def
|
||||
/BDC { mark 3 1 roll /BDC pdfmark } bind def
|
||||
/EMC { mark /EMC pdfmark } bind def
|
||||
/cairo_store_point { /cairo_point_y exch def /cairo_point_x exch def } def
|
||||
/Tj { show currentpoint cairo_store_point } bind def
|
||||
/TJ {
|
||||
{
|
||||
dup
|
||||
type /stringtype eq
|
||||
{ show } { -0.001 mul 0 cairo_font_matrix dtransform rmoveto } ifelse
|
||||
} forall
|
||||
currentpoint cairo_store_point
|
||||
} bind def
|
||||
/cairo_selectfont { cairo_font_matrix aload pop pop pop 0 0 6 array astore
|
||||
cairo_font exch selectfont cairo_point_x cairo_point_y moveto } bind def
|
||||
/Tf { pop /cairo_font exch def /cairo_font_matrix where
|
||||
{ pop cairo_selectfont } if } bind def
|
||||
/Td { matrix translate cairo_font_matrix matrix concatmatrix dup
|
||||
/cairo_font_matrix exch def dup 4 get exch 5 get cairo_store_point
|
||||
/cairo_font where { pop cairo_selectfont } if } bind def
|
||||
/Tm { 2 copy 8 2 roll 6 array astore /cairo_font_matrix exch def
|
||||
cairo_store_point /cairo_font where { pop cairo_selectfont } if } bind def
|
||||
/g { setgray } bind def
|
||||
/rg { setrgbcolor } bind def
|
||||
/d1 { setcachedevice } bind def
|
||||
/cairo_data_source {
|
||||
CairoDataIndex CairoData length lt
|
||||
{ CairoData CairoDataIndex get /CairoDataIndex CairoDataIndex 1 add def }
|
||||
{ () } ifelse
|
||||
} def
|
||||
/cairo_flush_ascii85_file { cairo_ascii85_file status { cairo_ascii85_file flushfile } if } def
|
||||
/cairo_image { image cairo_flush_ascii85_file } def
|
||||
/cairo_imagemask { imagemask cairo_flush_ascii85_file } def
|
||||
%%EndProlog
|
||||
%%BeginSetup
|
||||
%%EndSetup
|
||||
%%Page: 1 1
|
||||
%%BeginPageSetup
|
||||
%%PageBoundingBox: 0 0 214 213
|
||||
%%EndPageSetup
|
||||
q 0 0 214 213 rectclip
|
||||
1 0 0 -1 0 213 cm q
|
||||
0 g
|
||||
0.751181 w
|
||||
0 J
|
||||
0 j
|
||||
[] 0.0 d
|
||||
4 M q 1 0 0 1 0 0 cm
|
||||
1.75 110.961 m 209.629 110.961 l S Q
|
||||
206.621 110.961 m 205.121 112.465 l 210.379 110.961 l 205.121 109.461 l
|
||||
h
|
||||
206.621 110.961 m f*
|
||||
0.40063 w
|
||||
q -1 0 0 -1 0 0 cm
|
||||
-206.621 -110.961 m -205.121 -112.465 l -210.379 -110.961 l -205.121 -109.461
|
||||
l h
|
||||
-206.621 -110.961 m S Q
|
||||
0.751181 w
|
||||
q 1 0 0 1 0 0 cm
|
||||
207.996 85.633 m 6.297 135.934 l S Q
|
||||
9.211 135.207 m 10.305 133.383 l 5.566 136.113 l 11.031 136.301 l h
|
||||
9.211 135.207 m f*
|
||||
0.388725 w
|
||||
q 1 -0.249375 0.249375 1 0 0 cm
|
||||
-23.071 129.454 m -21.613 127.993 l -26.715 129.451 l -21.615 130.911 l
|
||||
h
|
||||
-23.071 129.454 m S Q
|
||||
0.85098 0.764706 0 rg
|
||||
0.97559 w
|
||||
q 1 0 0 1 0 0 cm
|
||||
1.336 195.148 m 212.027 26.332 l S Q
|
||||
208.984 28.773 m 208.68 31.516 l 212.789 25.723 l 206.238 28.473 l h
|
||||
208.984 28.773 m f*
|
||||
0.40605 w
|
||||
q -1 0.801248 -0.801248 -1 0 0 cm
|
||||
-113.234 -119.502 m -111.71 -121.023 l -117.04 -119.5 l -111.708 -117.979
|
||||
l h
|
||||
-113.234 -119.502 m S Q
|
||||
0.97559 w
|
||||
q 1 0 0 1 0 0 cm
|
||||
212.191 195.664 m 1.5 26.848 l S Q
|
||||
4.547 29.289 m 7.289 28.988 l 0.738 26.238 l 4.848 32.031 l h
|
||||
4.547 29.289 m f*
|
||||
0.40605 w
|
||||
q 1 0.801248 -0.801248 1 0 0 cm
|
||||
17.061 15.619 m 18.585 14.097 l 13.253 15.619 l 18.583 17.142 l h
|
||||
17.061 15.619 m S Q
|
||||
1.244409 w
|
||||
[ 2.488819 2.488819] 0 d
|
||||
q 1 0 0 1 0 0 cm
|
||||
212.734 24.949 m 212.734 33.316 165.328 40.105 106.848 40.105 c 48.371
|
||||
40.105 0.965 33.316 0.965 24.949 c 0.965 16.578 48.371 9.789 106.848 9.789
|
||||
c 165.328 9.789 212.734 16.578 212.734 24.949 c h
|
||||
212.734 24.949 m S Q
|
||||
1.243524 w
|
||||
[ 2.487049 1.243524] 0 d
|
||||
q 1 0 0 1 0 0 cm
|
||||
212.734 196.461 m 212.734 204.832 165.328 211.617 106.848 211.617 c 48.371
|
||||
211.617 0.965 204.832 0.965 196.461 c 0.965 188.09 48.371 181.305 106.848
|
||||
181.305 c 165.328 181.305 212.734 188.09 212.734 196.461 c h
|
||||
212.734 196.461 m S Q
|
||||
0 g
|
||||
0.751181 w
|
||||
[ 2.253543 2.253543] 0 d
|
||||
q 1 0 0 1 0 0 cm
|
||||
54.352 201.77 m 157.77 21.441 l S Q
|
||||
156.273 24.047 m 156.828 26.098 l 158.141 20.789 l 154.223 24.602 l h
|
||||
156.273 24.047 m f*
|
||||
0.347534 w
|
||||
[] 0.0 d
|
||||
q -0.573497 1 -1 -0.573497 0 0 cm
|
||||
-49.346 -127.974 m -48.042 -129.276 l -52.603 -127.973 l -48.043 -126.67
|
||||
l h
|
||||
-49.346 -127.974 m S Q
|
||||
0.704482 w
|
||||
q 1 0 0 1 0 0 cm
|
||||
105.688 198.969 m 105.688 1.387 l S Q
|
||||
105.688 4.207 m 107.098 5.613 l 105.688 0.684 l 104.277 5.613 l h
|
||||
105.688 4.207 m f*
|
||||
0.375724 w
|
||||
q 0 1 -1 0 0 0 cm
|
||||
4.207 -105.688 m 5.613 -107.098 l 0.684 -105.688 l 5.613 -104.277 l h
|
||||
4.207 -105.688 m S Q
|
||||
Q Q
|
||||
showpage
|
||||
%%Trailer
|
||||
end
|
||||
%%EOF
|
|
@ -0,0 +1,66 @@
|
|||
%% Creator: Inkscape inkscape 0.92.4, www.inkscape.org
|
||||
%% PDF/EPS/PS + LaTeX output extension by Johan Engelen, 2010
|
||||
%% Accompanies image file 'conedelumiere.eps' (pdf, eps, ps)
|
||||
%%
|
||||
%% To include the image in your LaTeX document, write
|
||||
%% \input{<filename>.pdf_tex}
|
||||
%% instead of
|
||||
%% \includegraphics{<filename>.pdf}
|
||||
%% To scale the image, write
|
||||
%% \def\svgwidth{<desired width>}
|
||||
%% \input{<filename>.pdf_tex}
|
||||
%% instead of
|
||||
%% \includegraphics[width=<desired width>]{<filename>.pdf}
|
||||
%%
|
||||
%% Images with a different path to the parent latex file can
|
||||
%% be accessed with the `import' package (which may need to be
|
||||
%% installed) using
|
||||
%% \usepackage{import}
|
||||
%% in the preamble, and then including the image with
|
||||
%% \import{<path to file>}{<filename>.pdf_tex}
|
||||
%% Alternatively, one can specify
|
||||
%% \graphicspath{{<path to file>/}}
|
||||
%%
|
||||
%% For more information, please see info/svg-inkscape on CTAN:
|
||||
%% http://tug.ctan.org/tex-archive/info/svg-inkscape
|
||||
%%
|
||||
\begingroup%
|
||||
\makeatletter%
|
||||
\providecommand\color[2][]{%
|
||||
\errmessage{(Inkscape) Color is used for the text in Inkscape, but the package 'color.sty' is not loaded}%
|
||||
\renewcommand\color[2][]{}%
|
||||
}%
|
||||
\providecommand\transparent[1]{%
|
||||
\errmessage{(Inkscape) Transparency is used (non-zero) for the text in Inkscape, but the package 'transparent.sty' is not loaded}%
|
||||
\renewcommand\transparent[1]{}%
|
||||
}%
|
||||
\providecommand\rotatebox[2]{#2}%
|
||||
\newcommand*\fsize{\dimexpr\f@size pt\relax}%
|
||||
\newcommand*\lineheight[1]{\fontsize{\fsize}{#1\fsize}\selectfont}%
|
||||
\ifx\svgwidth\undefined%
|
||||
\setlength{\unitlength}{213.52830441bp}%
|
||||
\ifx\svgscale\undefined%
|
||||
\relax%
|
||||
\else%
|
||||
\setlength{\unitlength}{\unitlength * \real{\svgscale}}%
|
||||
\fi%
|
||||
\else%
|
||||
\setlength{\unitlength}{\svgwidth}%
|
||||
\fi%
|
||||
\global\let\svgwidth\undefined%
|
||||
\global\let\svgscale\undefined%
|
||||
\makeatother%
|
||||
\begin{picture}(1,0.99396215)%
|
||||
\lineheight{1}%
|
||||
\setlength\tabcolsep{0pt}%
|
||||
\put(0,0){\includegraphics[width=\unitlength]{images/eps/conedelumiere.eps}}%
|
||||
\put(0.03717699,0.39700042){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}x\end{tabular}}}}%
|
||||
\put(0.93703932,0.5057086){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}y\end{tabular}}}}%
|
||||
\put(0.50824587,0.88860304){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}ct\end{tabular}}}}%
|
||||
\put(0.04442419,0.603546){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}Ailleurs\\ou présent\end{tabular}}}}%
|
||||
\put(0.22077308,0.74607451){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}Futur\end{tabular}}}}%
|
||||
\put(0.55052129,0.18320754){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}Passé\end{tabular}}}}%
|
||||
\put(0.31257112,0.28225289){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}Trajet\\corps\\massif\end{tabular}}}}%
|
||||
\put(0.7147915,0.37284298){\color[rgb]{0.85098039,0.76470588,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}Trajet\\lumière\end{tabular}}}}%
|
||||
\end{picture}%
|
||||
\endgroup%
|
|
@ -0,0 +1,152 @@
|
|||
%!PS-Adobe-3.0 EPSF-3.0
|
||||
%%Creator: cairo 1.16.0 (https://cairographics.org)
|
||||
%%CreationDate: Thu Apr 8 16:32:59 2021
|
||||
%%Pages: 1
|
||||
%%DocumentData: Clean7Bit
|
||||
%%LanguageLevel: 2
|
||||
%%BoundingBox: 0 0 216 136
|
||||
%%EndComments
|
||||
%%BeginProlog
|
||||
50 dict begin
|
||||
/q { gsave } bind def
|
||||
/Q { grestore } bind def
|
||||
/cm { 6 array astore concat } bind def
|
||||
/w { setlinewidth } bind def
|
||||
/J { setlinecap } bind def
|
||||
/j { setlinejoin } bind def
|
||||
/M { setmiterlimit } bind def
|
||||
/d { setdash } bind def
|
||||
/m { moveto } bind def
|
||||
/l { lineto } bind def
|
||||
/c { curveto } bind def
|
||||
/h { closepath } bind def
|
||||
/re { exch dup neg 3 1 roll 5 3 roll moveto 0 rlineto
|
||||
0 exch rlineto 0 rlineto closepath } bind def
|
||||
/S { stroke } bind def
|
||||
/f { fill } bind def
|
||||
/f* { eofill } bind def
|
||||
/n { newpath } bind def
|
||||
/W { clip } bind def
|
||||
/W* { eoclip } bind def
|
||||
/BT { } bind def
|
||||
/ET { } bind def
|
||||
/BDC { mark 3 1 roll /BDC pdfmark } bind def
|
||||
/EMC { mark /EMC pdfmark } bind def
|
||||
/cairo_store_point { /cairo_point_y exch def /cairo_point_x exch def } def
|
||||
/Tj { show currentpoint cairo_store_point } bind def
|
||||
/TJ {
|
||||
{
|
||||
dup
|
||||
type /stringtype eq
|
||||
{ show } { -0.001 mul 0 cairo_font_matrix dtransform rmoveto } ifelse
|
||||
} forall
|
||||
currentpoint cairo_store_point
|
||||
} bind def
|
||||
/cairo_selectfont { cairo_font_matrix aload pop pop pop 0 0 6 array astore
|
||||
cairo_font exch selectfont cairo_point_x cairo_point_y moveto } bind def
|
||||
/Tf { pop /cairo_font exch def /cairo_font_matrix where
|
||||
{ pop cairo_selectfont } if } bind def
|
||||
/Td { matrix translate cairo_font_matrix matrix concatmatrix dup
|
||||
/cairo_font_matrix exch def dup 4 get exch 5 get cairo_store_point
|
||||
/cairo_font where { pop cairo_selectfont } if } bind def
|
||||
/Tm { 2 copy 8 2 roll 6 array astore /cairo_font_matrix exch def
|
||||
cairo_store_point /cairo_font where { pop cairo_selectfont } if } bind def
|
||||
/g { setgray } bind def
|
||||
/rg { setrgbcolor } bind def
|
||||
/d1 { setcachedevice } bind def
|
||||
/cairo_data_source {
|
||||
CairoDataIndex CairoData length lt
|
||||
{ CairoData CairoDataIndex get /CairoDataIndex CairoDataIndex 1 add def }
|
||||
{ () } ifelse
|
||||
} def
|
||||
/cairo_flush_ascii85_file { cairo_ascii85_file status { cairo_ascii85_file flushfile } if } def
|
||||
/cairo_image { image cairo_flush_ascii85_file } def
|
||||
/cairo_imagemask { imagemask cairo_flush_ascii85_file } def
|
||||
%%EndProlog
|
||||
%%BeginSetup
|
||||
%%EndSetup
|
||||
%%Page: 1 1
|
||||
%%BeginPageSetup
|
||||
%%PageBoundingBox: 0 0 216 136
|
||||
%%EndPageSetup
|
||||
q 0 0 216 136 rectclip
|
||||
1 0 0 -1 0 136 cm q
|
||||
0 g
|
||||
0.815942 w
|
||||
0 J
|
||||
0 j
|
||||
[] 0.0 d
|
||||
4 M q 1 0 0 1 0 0 cm
|
||||
64.148 1.609 m 64.148 71.316 l 1.312 115.895 l S Q
|
||||
64.148 4.871 m 65.781 6.504 l 64.148 0.793 l 62.516 6.504 l h
|
||||
64.148 4.871 m f*
|
||||
0.435169 w
|
||||
q 0 1 -1 0 0 0 cm
|
||||
4.871 -64.148 m 6.504 -65.781 l 0.793 -64.148 l 6.504 -62.516 l h
|
||||
4.871 -64.148 m S Q
|
||||
3.973 114.004 m 4.359 111.73 l 0.645 116.367 l 6.25 114.391 l h
|
||||
3.973 114.004 m f*
|
||||
0.354934 w
|
||||
q 1 -0.709375 0.709375 1 0 0 cm
|
||||
-51.156 77.715 m -49.826 76.385 l -54.486 77.716 l -49.824 79.047 l h
|
||||
-51.156 77.715 m S Q
|
||||
0.751181 w
|
||||
q 1 0 0 1 0 0 cm
|
||||
145.332 29.328 m 145.332 93.504 l 87.48 134.543 l S Q
|
||||
145.332 32.332 m 146.832 33.836 l 145.332 28.574 l 143.828 33.836 l h
|
||||
145.332 32.332 m f*
|
||||
0.40063 w
|
||||
q 0 1 -1 0 0 0 cm
|
||||
32.332 -145.332 m 33.836 -146.832 l 28.574 -145.332 l 33.836 -143.828 l
|
||||
h
|
||||
32.332 -145.332 m S Q
|
||||
89.934 132.805 m 90.289 130.707 l 86.867 134.977 l 92.027 133.16 l h
|
||||
89.934 132.805 m f*
|
||||
0.326763 w
|
||||
q 1 -0.709375 0.709375 1 0 0 cm
|
||||
-2.844 130.787 m -1.617 129.56 l -5.909 130.785 l -1.619 132.012 l h
|
||||
-2.844 130.787 m S Q
|
||||
0.75 w
|
||||
q 1 0 0 1 0 0 cm
|
||||
64.148 71.316 m 213.656 112.355 l S Q
|
||||
210.762 111.562 m 208.918 112.609 l 214.379 112.555 l 209.711 109.719 l
|
||||
h
|
||||
210.762 111.562 m f*
|
||||
0.385733 w
|
||||
q -1 -0.274486 0.274486 -1 0 0 cm
|
||||
-224.472 -49.948 m -223.024 -51.392 l -228.089 -49.947 l -223.024 -48.502
|
||||
l h
|
||||
-224.472 -49.948 m S Q
|
||||
0.75 w
|
||||
q 1 0 0 1 0 0 cm
|
||||
64.148 71.316 m 42.094 29.738 l S Q
|
||||
43.5 32.391 m 45.527 33.012 l 41.742 29.074 l 42.879 34.418 l h
|
||||
43.5 32.391 m f*
|
||||
0.353366 w
|
||||
q 0.530435 1 -1 0.530435 0 0 cm
|
||||
43.286 -20.54 m 44.61 -21.865 l 39.97 -20.541 l 44.611 -19.216 l h
|
||||
43.286 -20.54 m S Q
|
||||
0.75 w
|
||||
q 1 0 0 1 0 0 cm
|
||||
145.332 93.504 m 42.094 29.738 l S Q
|
||||
44.645 31.316 m 46.711 30.828 l 41.457 29.344 l 45.133 33.379 l h
|
||||
44.645 31.316 m f*
|
||||
0.340317 w
|
||||
q 1 0.617663 -0.617663 1 0 0 cm
|
||||
46.317 2.708 m 47.595 1.431 l 43.128 2.705 l 47.593 3.983 l h
|
||||
46.317 2.708 m S Q
|
||||
0.75 w
|
||||
q 1 0 0 1 0 0 cm
|
||||
145.469 60.691 m 208.199 74.613 l S Q
|
||||
205.273 73.961 m 203.484 75.102 l 208.934 74.773 l 204.133 72.172 l h
|
||||
205.273 73.961 m f*
|
||||
0.390501 w
|
||||
q -1 -0.221902 0.221902 -1 0 0 cm
|
||||
-211.282 -27.077 m -209.818 -28.543 l -214.942 -27.077 l -209.816 -25.613
|
||||
l h
|
||||
-211.282 -27.077 m S Q
|
||||
Q Q
|
||||
showpage
|
||||
%%Trailer
|
||||
end
|
||||
%%EOF
|
|
@ -0,0 +1,66 @@
|
|||
%% Creator: Inkscape inkscape 0.92.4, www.inkscape.org
|
||||
%% PDF/EPS/PS + LaTeX output extension by Johan Engelen, 2010
|
||||
%% Accompanies image file 'referentiels.eps' (pdf, eps, ps)
|
||||
%%
|
||||
%% To include the image in your LaTeX document, write
|
||||
%% \input{<filename>.pdf_tex}
|
||||
%% instead of
|
||||
%% \includegraphics{<filename>.pdf}
|
||||
%% To scale the image, write
|
||||
%% \def\svgwidth{<desired width>}
|
||||
%% \input{<filename>.pdf_tex}
|
||||
%% instead of
|
||||
%% \includegraphics[width=<desired width>]{<filename>.pdf}
|
||||
%%
|
||||
%% Images with a different path to the parent latex file can
|
||||
%% be accessed with the `import' package (which may need to be
|
||||
%% installed) using
|
||||
%% \usepackage{import}
|
||||
%% in the preamble, and then including the image with
|
||||
%% \import{<path to file>}{<filename>.pdf_tex}
|
||||
%% Alternatively, one can specify
|
||||
%% \graphicspath{{<path to file>/}}
|
||||
%%
|
||||
%% For more information, please see info/svg-inkscape on CTAN:
|
||||
%% http://tug.ctan.org/tex-archive/info/svg-inkscape
|
||||
%%
|
||||
\begingroup%
|
||||
\makeatletter%
|
||||
\providecommand\color[2][]{%
|
||||
\errmessage{(Inkscape) Color is used for the text in Inkscape, but the package 'color.sty' is not loaded}%
|
||||
\renewcommand\color[2][]{}%
|
||||
}%
|
||||
\providecommand\transparent[1]{%
|
||||
\errmessage{(Inkscape) Transparency is used (non-zero) for the text in Inkscape, but the package 'transparent.sty' is not loaded}%
|
||||
\renewcommand\transparent[1]{}%
|
||||
}%
|
||||
\providecommand\rotatebox[2]{#2}%
|
||||
\newcommand*\fsize{\dimexpr\f@size pt\relax}%
|
||||
\newcommand*\lineheight[1]{\fontsize{\fsize}{#1\fsize}\selectfont}%
|
||||
\ifx\svgwidth\undefined%
|
||||
\setlength{\unitlength}{215.07992434bp}%
|
||||
\ifx\svgscale\undefined%
|
||||
\relax%
|
||||
\else%
|
||||
\setlength{\unitlength}{\unitlength * \real{\svgscale}}%
|
||||
\fi%
|
||||
\else%
|
||||
\setlength{\unitlength}{\svgwidth}%
|
||||
\fi%
|
||||
\global\let\svgwidth\undefined%
|
||||
\global\let\svgscale\undefined%
|
||||
\makeatother%
|
||||
\begin{picture}(1,0.62952534)%
|
||||
\lineheight{1}%
|
||||
\setlength\tabcolsep{0pt}%
|
||||
\put(0,0){\includegraphics[width=\unitlength]{images/eps/referentiels.eps}}%
|
||||
\put(0.90763918,0.16008987){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}$x$\end{tabular}}}}%
|
||||
\put(0.7076505,0.47518811){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}$y'$\end{tabular}}}}%
|
||||
\put(0.32302957,0.57297606){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}$y$\end{tabular}}}}%
|
||||
\put(0.04777774,0.17858156){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}$z$\end{tabular}}}}%
|
||||
\put(0.4050027,0.06090743){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}$z'$\end{tabular}}}}%
|
||||
\put(0.00147458,0.52598288){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}$\overrightarrow{r}(x,y,z,t)$\end{tabular}}}}%
|
||||
\put(0.3171841,0.44031571){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}$\overrightarrow{r'}(x',y',z',t')$\end{tabular}}}}%
|
||||
\put(0.88914764,0.34164425){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}$V$\end{tabular}}}}%
|
||||
\end{picture}%
|
||||
\endgroup%
|
|
@ -0,0 +1,654 @@
|
|||
%!PS-Adobe-3.0 EPSF-3.0
|
||||
%%Creator: cairo 1.16.0 (https://cairographics.org)
|
||||
%%CreationDate: Mon Apr 12 17:14:30 2021
|
||||
%%Pages: 1
|
||||
%%DocumentData: Clean7Bit
|
||||
%%LanguageLevel: 2
|
||||
%%BoundingBox: 0 0 389 254
|
||||
%%EndComments
|
||||
%%BeginProlog
|
||||
50 dict begin
|
||||
/q { gsave } bind def
|
||||
/Q { grestore } bind def
|
||||
/cm { 6 array astore concat } bind def
|
||||
/w { setlinewidth } bind def
|
||||
/J { setlinecap } bind def
|
||||
/j { setlinejoin } bind def
|
||||
/M { setmiterlimit } bind def
|
||||
/d { setdash } bind def
|
||||
/m { moveto } bind def
|
||||
/l { lineto } bind def
|
||||
/c { curveto } bind def
|
||||
/h { closepath } bind def
|
||||
/re { exch dup neg 3 1 roll 5 3 roll moveto 0 rlineto
|
||||
0 exch rlineto 0 rlineto closepath } bind def
|
||||
/S { stroke } bind def
|
||||
/f { fill } bind def
|
||||
/f* { eofill } bind def
|
||||
/n { newpath } bind def
|
||||
/W { clip } bind def
|
||||
/W* { eoclip } bind def
|
||||
/BT { } bind def
|
||||
/ET { } bind def
|
||||
/BDC { mark 3 1 roll /BDC pdfmark } bind def
|
||||
/EMC { mark /EMC pdfmark } bind def
|
||||
/cairo_store_point { /cairo_point_y exch def /cairo_point_x exch def } def
|
||||
/Tj { show currentpoint cairo_store_point } bind def
|
||||
/TJ {
|
||||
{
|
||||
dup
|
||||
type /stringtype eq
|
||||
{ show } { -0.001 mul 0 cairo_font_matrix dtransform rmoveto } ifelse
|
||||
} forall
|
||||
currentpoint cairo_store_point
|
||||
} bind def
|
||||
/cairo_selectfont { cairo_font_matrix aload pop pop pop 0 0 6 array astore
|
||||
cairo_font exch selectfont cairo_point_x cairo_point_y moveto } bind def
|
||||
/Tf { pop /cairo_font exch def /cairo_font_matrix where
|
||||
{ pop cairo_selectfont } if } bind def
|
||||
/Td { matrix translate cairo_font_matrix matrix concatmatrix dup
|
||||
/cairo_font_matrix exch def dup 4 get exch 5 get cairo_store_point
|
||||
/cairo_font where { pop cairo_selectfont } if } bind def
|
||||
/Tm { 2 copy 8 2 roll 6 array astore /cairo_font_matrix exch def
|
||||
cairo_store_point /cairo_font where { pop cairo_selectfont } if } bind def
|
||||
/g { setgray } bind def
|
||||
/rg { setrgbcolor } bind def
|
||||
/d1 { setcachedevice } bind def
|
||||
/cairo_data_source {
|
||||
CairoDataIndex CairoData length lt
|
||||
{ CairoData CairoDataIndex get /CairoDataIndex CairoDataIndex 1 add def }
|
||||
{ () } ifelse
|
||||
} def
|
||||
/cairo_flush_ascii85_file { cairo_ascii85_file status { cairo_ascii85_file flushfile } if } def
|
||||
/cairo_image { image cairo_flush_ascii85_file } def
|
||||
/cairo_imagemask { imagemask cairo_flush_ascii85_file } def
|
||||
%%EndProlog
|
||||
%%BeginSetup
|
||||
%%EndSetup
|
||||
%%Page: 1 1
|
||||
%%BeginPageSetup
|
||||
%%PageBoundingBox: 0 0 389 254
|
||||
%%EndPageSetup
|
||||
q 0 0 389 254 rectclip
|
||||
1 0 0 -1 0 254 cm q
|
||||
0.894118 g
|
||||
0 43.711 m 387.953 43.711 l 387.953 66.602 l 0.125 66.602 l h
|
||||
0 43.711 m f
|
||||
0 105.93 m 387.953 105.93 l 387.953 128.824 l 0.125 128.824 l h
|
||||
0 105.93 m f
|
||||
0 230.375 m 387.953 230.375 l 387.953 253.27 l 0.125 253.27 l h
|
||||
0 230.375 m f
|
||||
0 168.152 m 387.953 168.152 l 387.953 191.047 l 0.125 191.047 l h
|
||||
0 168.152 m f
|
||||
0 g
|
||||
0.75 w
|
||||
0 J
|
||||
0 j
|
||||
[] 0.0 d
|
||||
4 M q 1 0 0 1 0 0 cm
|
||||
0 105.93 m 387.953 105.93 l 387.953 105.645 l S Q
|
||||
0.027451 g
|
||||
0.374149 w
|
||||
q 1 0 0 1 0 0 cm
|
||||
2.289 106.031 4.59 2.148 re S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
27.492 106.031 4.586 2.148 re S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
52.691 106.031 4.586 2.148 re S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
77.895 106.031 4.586 2.148 re S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
103.094 106.031 4.586 2.148 re S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
128.293 106.031 4.59 2.148 re S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
153.496 106.031 4.586 2.148 re S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
178.695 106.031 4.586 2.148 re S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
203.895 106.031 4.59 2.148 re S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
229.098 106.031 4.586 2.148 re S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
254.297 106.031 4.59 2.148 re S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
279.5 106.031 4.586 2.148 re S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
304.699 106.031 4.586 2.148 re S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
329.898 106.031 4.59 2.148 re S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
355.102 106.031 4.586 2.148 re S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
380.301 106.031 4.59 2.148 re S Q
|
||||
0 g
|
||||
0.75 w
|
||||
q 1 0 0 0.410646 0 0 cm
|
||||
36.359 257.873 m 36.359 275.946 l S Q
|
||||
q 1 0 0 0.410646 0 0 cm
|
||||
70.52 257.873 m 70.52 275.946 l S Q
|
||||
q 1 0 0 0.410646 0 0 cm
|
||||
104.676 257.873 m 104.676 275.946 l S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
0 168.152 m 387.953 168.152 l 387.953 167.867 l S Q
|
||||
0.027451 g
|
||||
0.374149 w
|
||||
q 1 0 0 1 0 0 cm
|
||||
2.289 168.254 4.59 2.148 re S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
27.492 168.254 4.586 2.148 re S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
52.691 168.254 4.586 2.148 re S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
77.895 168.254 4.586 2.148 re S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
103.094 168.254 4.586 2.148 re S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
128.293 168.254 4.59 2.148 re S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
153.496 168.254 4.586 2.148 re S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
178.695 168.254 4.586 2.148 re S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
203.895 168.254 4.59 2.148 re S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
229.098 168.254 4.586 2.148 re S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
254.297 168.254 4.59 2.148 re S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
279.5 168.254 4.586 2.148 re S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
304.699 168.254 4.586 2.148 re S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
329.898 168.254 4.59 2.148 re S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
355.102 168.254 4.586 2.148 re S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
380.301 168.254 4.59 2.148 re S Q
|
||||
0 g
|
||||
0.75 w
|
||||
q 1 0 0 0.410646 0 0 cm
|
||||
36.359 409.397 m 36.359 427.47 l S Q
|
||||
q 1 0 0 0.410646 0 0 cm
|
||||
70.52 409.397 m 70.52 427.47 l S Q
|
||||
q 1 0 0 0.410646 0 0 cm
|
||||
104.676 409.397 m 104.676 427.47 l S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
0 230.375 m 387.953 230.375 l 387.953 230.086 l S Q
|
||||
0.027451 g
|
||||
0.374149 w
|
||||
q 1 0 0 1 0 0 cm
|
||||
2.289 230.477 4.59 2.148 re S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
27.492 230.477 4.586 2.148 re S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
52.691 230.477 4.586 2.148 re S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
77.895 230.477 4.586 2.148 re S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
103.094 230.477 4.586 2.148 re S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
128.293 230.477 4.59 2.148 re S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
153.496 230.477 4.586 2.148 re S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
178.695 230.477 4.586 2.148 re S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
203.895 230.477 4.59 2.148 re S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
229.098 230.477 4.586 2.148 re S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
254.297 230.477 4.59 2.148 re S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
279.5 230.477 4.586 2.148 re S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
304.699 230.477 4.586 2.148 re S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
329.898 230.477 4.59 2.148 re S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
355.102 230.477 4.586 2.148 re S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
380.301 230.477 4.59 2.148 re S Q
|
||||
0 g
|
||||
0.75 w
|
||||
q 1 0 0 0.410646 0 0 cm
|
||||
36.359 560.92 m 36.359 578.994 l S Q
|
||||
q 1 0 0 0.410646 0 0 cm
|
||||
70.52 560.92 m 70.52 578.994 l S Q
|
||||
q 1 0 0 0.410646 0 0 cm
|
||||
104.676 560.92 m 104.676 578.994 l S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
0 43.711 m 387.953 43.711 l 387.953 43.422 l S Q
|
||||
0.027451 g
|
||||
0.374149 w
|
||||
q 1 0 0 1 0 0 cm
|
||||
2.289 43.809 4.59 2.152 re S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
27.492 43.809 4.586 2.152 re S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
52.691 43.809 4.586 2.152 re S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
77.895 43.809 4.586 2.152 re S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
103.094 43.809 4.586 2.152 re S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
128.293 43.809 4.59 2.152 re S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
153.496 43.809 4.586 2.152 re S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
178.695 43.809 4.586 2.152 re S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
203.895 43.809 4.59 2.152 re S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
229.098 43.809 4.586 2.152 re S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
254.297 43.809 4.59 2.152 re S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
279.5 43.809 4.586 2.152 re S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
304.699 43.809 4.586 2.152 re S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
329.898 43.809 4.59 2.152 re S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
355.102 43.809 4.586 2.152 re S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
380.301 43.809 4.59 2.152 re S Q
|
||||
0 g
|
||||
0.75 w
|
||||
q 1 0 0 0.410646 0 0 cm
|
||||
36.359 106.349 m 36.359 124.423 l S Q
|
||||
q 1 0 0 0.410646 0 0 cm
|
||||
70.52 106.349 m 70.52 124.423 l S Q
|
||||
q 1 0 0 0.410646 0 0 cm
|
||||
104.676 106.349 m 104.676 124.423 l S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
11.512 39.395 m 11.512 34.789 l 22.98 28.168 l 118.285 28.168 l 129.66
|
||||
34.734 l 129.66 39.68 l h
|
||||
11.512 39.395 m S Q
|
||||
0.027451 g
|
||||
0.751181 w
|
||||
q 1 0 0 1 0 0 cm
|
||||
19.078 41.574 m 19.078 42.543 18.293 43.328 17.324 43.328 c 16.355 43.328
|
||||
15.57 42.543 15.57 41.574 c 15.57 40.609 16.355 39.824 17.324 39.824 c
|
||||
18.293 39.824 19.078 40.609 19.078 41.574 c h
|
||||
19.078 41.574 m S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
23.715 41.574 m 23.715 42.543 22.93 43.328 21.961 43.328 c 20.996 43.328
|
||||
20.211 42.543 20.211 41.574 c 20.211 40.609 20.996 39.824 21.961 39.824
|
||||
c 22.93 39.824 23.715 40.609 23.715 41.574 c h
|
||||
23.715 41.574 m S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
28.355 41.574 m 28.355 42.543 27.57 43.328 26.602 43.328 c 25.633 43.328
|
||||
24.848 42.543 24.848 41.574 c 24.848 40.609 25.633 39.824 26.602 39.824
|
||||
c 27.57 39.824 28.355 40.609 28.355 41.574 c h
|
||||
28.355 41.574 m S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
67.461 41.574 m 67.461 42.543 66.676 43.328 65.707 43.328 c 64.742 43.328
|
||||
63.957 42.543 63.957 41.574 c 63.957 40.609 64.742 39.824 65.707 39.824
|
||||
c 66.676 39.824 67.461 40.609 67.461 41.574 c h
|
||||
67.461 41.574 m S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
72.102 41.574 m 72.102 42.543 71.316 43.328 70.348 43.328 c 69.379 43.328
|
||||
68.594 42.543 68.594 41.574 c 68.594 40.609 69.379 39.824 70.348 39.824
|
||||
c 71.316 39.824 72.102 40.609 72.102 41.574 c h
|
||||
72.102 41.574 m S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
76.738 41.574 m 76.738 42.543 75.953 43.328 74.988 43.328 c 74.02 43.328
|
||||
73.234 42.543 73.234 41.574 c 73.234 40.609 74.02 39.824 74.988 39.824
|
||||
c 75.953 39.824 76.738 40.609 76.738 41.574 c h
|
||||
76.738 41.574 m S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
115.844 41.574 m 115.844 42.543 115.062 43.328 114.094 43.328 c 113.125
|
||||
43.328 112.34 42.543 112.34 41.574 c 112.34 40.609 113.125 39.824 114.094
|
||||
39.824 c 115.062 39.824 115.844 40.609 115.844 41.574 c h
|
||||
115.844 41.574 m S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
120.484 41.574 m 120.484 42.543 119.699 43.328 118.73 43.328 c 117.766
|
||||
43.328 116.98 42.543 116.98 41.574 c 116.98 40.609 117.766 39.824 118.73
|
||||
39.824 c 119.699 39.824 120.484 40.609 120.484 41.574 c h
|
||||
120.484 41.574 m S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
125.125 41.574 m 125.125 42.543 124.34 43.328 123.371 43.328 c 122.402
|
||||
43.328 121.617 42.543 121.617 41.574 c 121.617 40.609 122.402 39.824 123.371
|
||||
39.824 c 124.34 39.824 125.125 40.609 125.125 41.574 c h
|
||||
125.125 41.574 m S Q
|
||||
0 g
|
||||
0.75 w
|
||||
q 1 0 0 1 0 0 cm
|
||||
15.363 32.676 m 31.105 32.676 l 31.105 30.062 l 19.695 30.062 l h
|
||||
15.363 32.676 m S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
125.938 32.676 m 110.199 32.676 l 110.199 30.062 l 121.609 30.062 l h
|
||||
125.938 32.676 m S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
78.48 32.676 m 62.742 32.676 l 62.742 30.062 l 78.551 30.062 l h
|
||||
78.48 32.676 m S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
36.43 21.336 m 36.43 39.41 l S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
70.586 21.336 m 70.586 39.41 l S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
104.746 21.336 m 104.746 39.41 l S Q
|
||||
0.751181 w
|
||||
q 1 0 0 1 0 0 cm
|
||||
135.16 36.867 m 154.402 36.867 l S Q
|
||||
151.398 36.867 m 149.895 38.371 l 155.152 36.867 l 149.895 35.367 l h
|
||||
151.398 36.867 m f*
|
||||
0.40063 w
|
||||
q -1 0 0 -1 0 0 cm
|
||||
-151.398 -36.867 m -149.895 -38.371 l -155.152 -36.867 l -149.895 -35.367
|
||||
l h
|
||||
-151.398 -36.867 m S Q
|
||||
0.75 w
|
||||
q 1 0 0 1 0 0 cm
|
||||
23.477 101.613 m 23.477 97.012 l 34.945 90.391 l 130.25 90.391 l 141.625
|
||||
96.957 l 141.625 101.902 l h
|
||||
23.477 101.613 m S Q
|
||||
0.027451 g
|
||||
0.751181 w
|
||||
q 1 0 0 1 0 0 cm
|
||||
31.043 103.797 m 31.043 104.766 30.258 105.551 29.289 105.551 c 28.32 105.551
|
||||
27.535 104.766 27.535 103.797 c 27.535 102.828 28.32 102.047 29.289 102.047
|
||||
c 30.258 102.047 31.043 102.828 31.043 103.797 c h
|
||||
31.043 103.797 m S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
35.68 103.797 m 35.68 104.766 34.895 105.551 33.93 105.551 c 32.961 105.551
|
||||
32.176 104.766 32.176 103.797 c 32.176 102.828 32.961 102.047 33.93 102.047
|
||||
c 34.895 102.047 35.68 102.828 35.68 103.797 c h
|
||||
35.68 103.797 m S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
40.32 103.797 m 40.32 104.766 39.535 105.551 38.566 105.551 c 37.598 105.551
|
||||
36.812 104.766 36.812 103.797 c 36.812 102.828 37.598 102.047 38.566 102.047
|
||||
c 39.535 102.047 40.32 102.828 40.32 103.797 c h
|
||||
40.32 103.797 m S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
79.426 103.797 m 79.426 104.766 78.641 105.551 77.672 105.551 c 76.707
|
||||
105.551 75.922 104.766 75.922 103.797 c 75.922 102.828 76.707 102.047 77.672
|
||||
102.047 c 78.641 102.047 79.426 102.828 79.426 103.797 c h
|
||||
79.426 103.797 m S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
84.066 103.797 m 84.066 104.766 83.281 105.551 82.312 105.551 c 81.344
|
||||
105.551 80.559 104.766 80.559 103.797 c 80.559 102.828 81.344 102.047 82.312
|
||||
102.047 c 83.281 102.047 84.066 102.828 84.066 103.797 c h
|
||||
84.066 103.797 m S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
88.703 103.797 m 88.703 104.766 87.918 105.551 86.953 105.551 c 85.984
|
||||
105.551 85.199 104.766 85.199 103.797 c 85.199 102.828 85.984 102.047 86.953
|
||||
102.047 c 87.918 102.047 88.703 102.828 88.703 103.797 c h
|
||||
88.703 103.797 m S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
127.809 103.797 m 127.809 104.766 127.027 105.551 126.059 105.551 c 125.09
|
||||
105.551 124.305 104.766 124.305 103.797 c 124.305 102.828 125.09 102.047
|
||||
126.059 102.047 c 127.027 102.047 127.809 102.828 127.809 103.797 c h
|
||||
127.809 103.797 m S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
132.449 103.797 m 132.449 104.766 131.664 105.551 130.695 105.551 c 129.73
|
||||
105.551 128.945 104.766 128.945 103.797 c 128.945 102.828 129.73 102.047
|
||||
130.695 102.047 c 131.664 102.047 132.449 102.828 132.449 103.797 c h
|
||||
132.449 103.797 m S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
137.09 103.797 m 137.09 104.766 136.305 105.551 135.336 105.551 c 134.367
|
||||
105.551 133.582 104.766 133.582 103.797 c 133.582 102.828 134.367 102.047
|
||||
135.336 102.047 c 136.305 102.047 137.09 102.828 137.09 103.797 c h
|
||||
137.09 103.797 m S Q
|
||||
0 g
|
||||
0.75 w
|
||||
q 1 0 0 1 0 0 cm
|
||||
27.328 94.898 m 43.07 94.898 l 43.07 92.285 l 31.66 92.285 l h
|
||||
27.328 94.898 m S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
137.902 94.898 m 122.164 94.898 l 122.164 92.285 l 133.574 92.285 l h
|
||||
137.902 94.898 m S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
90.445 94.898 m 74.707 94.898 l 74.707 92.285 l 90.516 92.285 l h
|
||||
90.445 94.898 m S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
48.395 83.559 m 48.395 101.633 l S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
82.551 83.559 m 82.551 101.633 l S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
116.711 83.559 m 116.711 101.633 l S Q
|
||||
0.751181 w
|
||||
q 1 0 0 1 0 0 cm
|
||||
147.125 99.09 m 166.367 99.09 l S Q
|
||||
163.363 99.09 m 161.859 100.594 l 167.117 99.09 l 161.859 97.586 l h
|
||||
163.363 99.09 m f*
|
||||
0.40063 w
|
||||
q -1 0 0 -1 0 0 cm
|
||||
-163.363 -99.09 m -161.859 -100.594 l -167.117 -99.09 l -161.859 -97.586
|
||||
l h
|
||||
-163.363 -99.09 m S Q
|
||||
0.75 w
|
||||
q 1 0 0 1 0 0 cm
|
||||
35.309 163.836 m 35.309 159.23 l 46.777 152.613 l 142.086 152.613 l 153.461
|
||||
159.18 l 153.461 164.125 l h
|
||||
35.309 163.836 m S Q
|
||||
0.027451 g
|
||||
0.751181 w
|
||||
q 1 0 0 1 0 0 cm
|
||||
42.875 166.02 m 42.875 166.988 42.09 167.773 41.121 167.773 c 40.152 167.773
|
||||
39.371 166.988 39.371 166.02 c 39.371 165.051 40.152 164.266 41.121 164.266
|
||||
c 42.09 164.266 42.875 165.051 42.875 166.02 c h
|
||||
42.875 166.02 m S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
47.516 166.02 m 47.516 166.988 46.73 167.773 45.762 167.773 c 44.793 167.773
|
||||
44.008 166.988 44.008 166.02 c 44.008 165.051 44.793 164.266 45.762 164.266
|
||||
c 46.73 164.266 47.516 165.051 47.516 166.02 c h
|
||||
47.516 166.02 m S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
52.152 166.02 m 52.152 166.988 51.367 167.773 50.402 167.773 c 49.434 167.773
|
||||
48.648 166.988 48.648 166.02 c 48.648 165.051 49.434 164.266 50.402 164.266
|
||||
c 51.367 164.266 52.152 165.051 52.152 166.02 c h
|
||||
52.152 166.02 m S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
91.258 166.02 m 91.258 166.988 90.477 167.773 89.508 167.773 c 88.539 167.773
|
||||
87.754 166.988 87.754 166.02 c 87.754 165.051 88.539 164.266 89.508 164.266
|
||||
c 90.477 164.266 91.258 165.051 91.258 166.02 c h
|
||||
91.258 166.02 m S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
95.898 166.02 m 95.898 166.988 95.113 167.773 94.145 167.773 c 93.18 167.773
|
||||
92.395 166.988 92.395 166.02 c 92.395 165.051 93.18 164.266 94.145 164.266
|
||||
c 95.113 164.266 95.898 165.051 95.898 166.02 c h
|
||||
95.898 166.02 m S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
100.539 166.02 m 100.539 166.988 99.754 167.773 98.785 167.773 c 97.816
|
||||
167.773 97.031 166.988 97.031 166.02 c 97.031 165.051 97.816 164.266 98.785
|
||||
164.266 c 99.754 164.266 100.539 165.051 100.539 166.02 c h
|
||||
100.539 166.02 m S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
139.645 166.02 m 139.645 166.988 138.859 167.773 137.891 167.773 c 136.922
|
||||
167.773 136.141 166.988 136.141 166.02 c 136.141 165.051 136.922 164.266
|
||||
137.891 164.266 c 138.859 164.266 139.645 165.051 139.645 166.02 c h
|
||||
139.645 166.02 m S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
144.285 166.02 m 144.285 166.988 143.5 167.773 142.531 167.773 c 141.562
|
||||
167.773 140.777 166.988 140.777 166.02 c 140.777 165.051 141.562 164.266
|
||||
142.531 164.266 c 143.5 164.266 144.285 165.051 144.285 166.02 c h
|
||||
144.285 166.02 m S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
148.922 166.02 m 148.922 166.988 148.137 167.773 147.168 167.773 c 146.203
|
||||
167.773 145.418 166.988 145.418 166.02 c 145.418 165.051 146.203 164.266
|
||||
147.168 164.266 c 148.137 164.266 148.922 165.051 148.922 166.02 c h
|
||||
148.922 166.02 m S Q
|
||||
0 g
|
||||
0.75 w
|
||||
q 1 0 0 1 0 0 cm
|
||||
39.164 157.121 m 54.902 157.121 l 54.902 154.508 l 43.492 154.508 l h
|
||||
39.164 157.121 m S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
149.738 157.121 m 133.996 157.121 l 133.996 154.508 l 145.406 154.508 l
|
||||
h
|
||||
149.738 157.121 m S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
102.281 157.121 m 86.543 157.121 l 86.543 154.508 l 102.348 154.508 l h
|
||||
102.281 157.121 m S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
60.227 145.781 m 60.227 163.855 l S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
94.387 145.781 m 94.387 163.855 l S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
128.543 145.781 m 128.543 163.855 l S Q
|
||||
0.751181 w
|
||||
q 1 0 0 1 0 0 cm
|
||||
158.957 161.312 m 178.199 161.312 l S Q
|
||||
175.195 161.312 m 173.695 162.812 l 178.953 161.312 l 173.695 159.809 l
|
||||
h
|
||||
175.195 161.312 m f*
|
||||
0.40063 w
|
||||
q -1 0 0 -1 0 0 cm
|
||||
-175.195 -161.313 m -173.695 -162.813 l -178.953 -161.313 l -173.695 -159.809
|
||||
l h
|
||||
-175.195 -161.313 m S Q
|
||||
0.75 w
|
||||
q 1 0 0 1 0 0 cm
|
||||
46.664 226.059 m 46.664 221.453 l 58.133 214.832 l 153.441 214.832 l 164.816
|
||||
221.402 l 164.816 226.348 l h
|
||||
46.664 226.059 m S Q
|
||||
0.027451 g
|
||||
0.751181 w
|
||||
q 1 0 0 1 0 0 cm
|
||||
54.23 228.242 m 54.23 229.211 53.445 229.996 52.477 229.996 c 51.508 229.996
|
||||
50.727 229.211 50.727 228.242 c 50.727 227.273 51.508 226.488 52.477 226.488
|
||||
c 53.445 226.488 54.23 227.273 54.23 228.242 c h
|
||||
54.23 228.242 m S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
58.871 228.242 m 58.871 229.211 58.086 229.996 57.117 229.996 c 56.148
|
||||
229.996 55.363 229.211 55.363 228.242 c 55.363 227.273 56.148 226.488 57.117
|
||||
226.488 c 58.086 226.488 58.871 227.273 58.871 228.242 c h
|
||||
58.871 228.242 m S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
63.508 228.242 m 63.508 229.211 62.723 229.996 61.758 229.996 c 60.789
|
||||
229.996 60.004 229.211 60.004 228.242 c 60.004 227.273 60.789 226.488 61.758
|
||||
226.488 c 62.723 226.488 63.508 227.273 63.508 228.242 c h
|
||||
63.508 228.242 m S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
102.613 228.242 m 102.613 229.211 101.832 229.996 100.863 229.996 c 99.895
|
||||
229.996 99.109 229.211 99.109 228.242 c 99.109 227.273 99.895 226.488 100.863
|
||||
226.488 c 101.832 226.488 102.613 227.273 102.613 228.242 c h
|
||||
102.613 228.242 m S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
107.254 228.242 m 107.254 229.211 106.469 229.996 105.5 229.996 c 104.535
|
||||
229.996 103.75 229.211 103.75 228.242 c 103.75 227.273 104.535 226.488
|
||||
105.5 226.488 c 106.469 226.488 107.254 227.273 107.254 228.242 c h
|
||||
107.254 228.242 m S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
111.895 228.242 m 111.895 229.211 111.109 229.996 110.141 229.996 c 109.172
|
||||
229.996 108.387 229.211 108.387 228.242 c 108.387 227.273 109.172 226.488
|
||||
110.141 226.488 c 111.109 226.488 111.895 227.273 111.895 228.242 c h
|
||||
111.895 228.242 m S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
151 228.242 m 151 229.211 150.215 229.996 149.246 229.996 c 148.277 229.996
|
||||
147.496 229.211 147.496 228.242 c 147.496 227.273 148.277 226.488 149.246
|
||||
226.488 c 150.215 226.488 151 227.273 151 228.242 c h
|
||||
151 228.242 m S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
155.641 228.242 m 155.641 229.211 154.855 229.996 153.887 229.996 c 152.918
|
||||
229.996 152.133 229.211 152.133 228.242 c 152.133 227.273 152.918 226.488
|
||||
153.887 226.488 c 154.855 226.488 155.641 227.273 155.641 228.242 c h
|
||||
155.641 228.242 m S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
160.277 228.242 m 160.277 229.211 159.492 229.996 158.523 229.996 c 157.559
|
||||
229.996 156.773 229.211 156.773 228.242 c 156.773 227.273 157.559 226.488
|
||||
158.523 226.488 c 159.492 226.488 160.277 227.273 160.277 228.242 c h
|
||||
160.277 228.242 m S Q
|
||||
0 g
|
||||
0.75 w
|
||||
q 1 0 0 1 0 0 cm
|
||||
50.52 219.34 m 66.258 219.34 l 66.258 216.73 l 54.848 216.73 l h
|
||||
50.52 219.34 m S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
161.094 219.34 m 145.352 219.34 l 145.352 216.73 l 156.762 216.73 l h
|
||||
161.094 219.34 m S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
113.637 219.34 m 97.898 219.34 l 97.898 216.73 l 113.703 216.73 l h
|
||||
113.637 219.34 m S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
71.582 208 m 71.582 226.078 l S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
105.742 208 m 105.742 226.078 l S Q
|
||||
q 1 0 0 1 0 0 cm
|
||||
139.898 208 m 139.898 226.078 l S Q
|
||||
0.751181 w
|
||||
q 1 0 0 1 0 0 cm
|
||||
170.312 223.535 m 189.555 223.535 l S Q
|
||||
186.551 223.535 m 185.051 225.035 l 190.309 223.535 l 185.051 222.031 l
|
||||
h
|
||||
186.551 223.535 m f*
|
||||
0.40063 w
|
||||
q -1 0 0 -1 0 0 cm
|
||||
-186.551 -223.535 m -185.051 -225.035 l -190.309 -223.535 l -185.051 -222.031
|
||||
l h
|
||||
-186.551 -223.535 m S Q
|
||||
0.866667 0.866667 0 rg
|
||||
0.751181 w
|
||||
q 1 0 0 1 0 0 cm
|
||||
36.43 43.523 m 36.43 21.336 l 28.93 25.664 l 28.93 0 l S Q
|
||||
36.43 40.52 m 34.926 39.016 l 36.43 44.273 l 37.93 39.016 l h
|
||||
36.43 40.52 m f*
|
||||
0.40063 w
|
||||
q 0 -1 1 0 0 0 cm
|
||||
-40.52 36.43 m -39.016 34.926 l -44.273 36.43 l -39.016 37.93 l h
|
||||
-40.52 36.43 m S Q
|
||||
0.751181 w
|
||||
q 1 0 0 1 0 0 cm
|
||||
104.746 43.523 m 104.746 21.336 l 97.246 25.664 l 97.246 0 l S Q
|
||||
104.746 40.52 m 103.242 39.016 l 104.746 44.273 l 106.246 39.016 l h
|
||||
104.746 40.52 m f*
|
||||
0.40063 w
|
||||
q 0 -1 1 0 0 0 cm
|
||||
-40.52 104.746 m -39.016 103.242 l -44.273 104.746 l -39.016 106.246 l
|
||||
h
|
||||
-40.52 104.746 m S Q
|
||||
0.751181 w
|
||||
q 1 0 0 1 0 0 cm
|
||||
104.375 101.633 m 82.551 101.633 l S Q
|
||||
85.555 101.633 m 87.059 100.129 l 81.801 101.633 l 87.059 103.137 l h
|
||||
85.555 101.633 m f*
|
||||
0.40063 w
|
||||
q 1 0 0 1 0 0 cm
|
||||
85.555 101.633 m 87.059 100.129 l 81.801 101.633 l 87.059 103.137 l h
|
||||
85.555 101.633 m S Q
|
||||
0.751181 w
|
||||
q 1 0 0 1 0 0 cm
|
||||
36.25 101.508 m 58.074 101.508 l S Q
|
||||
55.07 101.508 m 53.57 103.012 l 58.828 101.508 l 53.57 100.008 l h
|
||||
55.07 101.508 m f*
|
||||
0.40063 w
|
||||
q -1 0 0 -1 0 0 cm
|
||||
-55.07 -101.508 m -53.57 -103.012 l -58.828 -101.508 l -53.57 -100.008
|
||||
l h
|
||||
-55.07 -101.508 m S Q
|
||||
0.751181 w
|
||||
q 1 0 0 1 0 0 cm
|
||||
36.359 175.539 m 68.527 175.539 l S Q
|
||||
65.52 175.539 m 64.02 177.039 l 69.277 175.539 l 64.02 174.035 l h
|
||||
65.52 175.539 m f*
|
||||
0.40063 w
|
||||
q -1 0 0 -1 0 0 cm
|
||||
-65.52 -175.539 m -64.02 -177.039 l -69.277 -175.539 l -64.02 -174.035
|
||||
l h
|
||||
-65.52 -175.539 m S Q
|
||||
0.751181 w
|
||||
q 1 0 0 1 0 0 cm
|
||||
104.164 175.539 m 72 175.539 l S Q
|
||||
75.004 175.539 m 76.504 174.035 l 71.246 175.539 l 76.504 177.039 l h
|
||||
75.004 175.539 m f*
|
||||
0.40063 w
|
||||
q 1 0 0 1 0 0 cm
|
||||
75.004 175.539 m 76.504 174.035 l 71.246 175.539 l 76.504 177.039 l h
|
||||
75.004 175.539 m S Q
|
||||
0.751181 w
|
||||
q 1 0 0 1 0 0 cm
|
||||
36.141 225.609 m 104.156 225.609 l S Q
|
||||
101.152 225.609 m 99.648 227.113 l 104.906 225.609 l 99.648 224.105 l h
|
||||
101.152 225.609 m f*
|
||||
0.40063 w
|
||||
q -1 0 0 -1 0 0 cm
|
||||
-101.152 -225.609 m -99.648 -227.113 l -104.906 -225.609 l -99.648 -224.105
|
||||
l h
|
||||
-101.152 -225.609 m S Q
|
||||
Q Q
|
||||
showpage
|
||||
%%Trailer
|
||||
end
|
||||
%%EOF
|
|
@ -0,0 +1,91 @@
|
|||
%% Creator: Inkscape inkscape 0.92.4, www.inkscape.org
|
||||
%% PDF/EPS/PS + LaTeX output extension by Johan Engelen, 2010
|
||||
%% Accompanies image file 'simultaneitetrain.eps' (pdf, eps, ps)
|
||||
%%
|
||||
%% To include the image in your LaTeX document, write
|
||||
%% \input{<filename>.pdf_tex}
|
||||
%% instead of
|
||||
%% \includegraphics{<filename>.pdf}
|
||||
%% To scale the image, write
|
||||
%% \def\svgwidth{<desired width>}
|
||||
%% \input{<filename>.pdf_tex}
|
||||
%% instead of
|
||||
%% \includegraphics[width=<desired width>]{<filename>.pdf}
|
||||
%%
|
||||
%% Images with a different path to the parent latex file can
|
||||
%% be accessed with the `import' package (which may need to be
|
||||
%% installed) using
|
||||
%% \usepackage{import}
|
||||
%% in the preamble, and then including the image with
|
||||
%% \import{<path to file>}{<filename>.pdf_tex}
|
||||
%% Alternatively, one can specify
|
||||
%% \graphicspath{{<path to file>/}}
|
||||
%%
|
||||
%% For more information, please see info/svg-inkscape on CTAN:
|
||||
%% http://tug.ctan.org/tex-archive/info/svg-inkscape
|
||||
%%
|
||||
\begingroup%
|
||||
\makeatletter%
|
||||
\providecommand\color[2][]{%
|
||||
\errmessage{(Inkscape) Color is used for the text in Inkscape, but the package 'color.sty' is not loaded}%
|
||||
\renewcommand\color[2][]{}%
|
||||
}%
|
||||
\providecommand\transparent[1]{%
|
||||
\errmessage{(Inkscape) Transparency is used (non-zero) for the text in Inkscape, but the package 'transparent.sty' is not loaded}%
|
||||
\renewcommand\transparent[1]{}%
|
||||
}%
|
||||
\providecommand\rotatebox[2]{#2}%
|
||||
\newcommand*\fsize{\dimexpr\f@size pt\relax}%
|
||||
\newcommand*\lineheight[1]{\fontsize{\fsize}{#1\fsize}\selectfont}%
|
||||
\ifx\svgwidth\undefined%
|
||||
\setlength{\unitlength}{388.32938685bp}%
|
||||
\ifx\svgscale\undefined%
|
||||
\relax%
|
||||
\else%
|
||||
\setlength{\unitlength}{\unitlength * \real{\svgscale}}%
|
||||
\fi%
|
||||
\else%
|
||||
\setlength{\unitlength}{\svgwidth}%
|
||||
\fi%
|
||||
\global\let\svgwidth\undefined%
|
||||
\global\let\svgscale\undefined%
|
||||
\makeatother%
|
||||
\begin{picture}(1,0.65219798)%
|
||||
\lineheight{1}%
|
||||
\setlength\tabcolsep{0pt}%
|
||||
\put(0,0){\includegraphics[width=\unitlength]{images/eps/simultaneitetrain.eps}}%
|
||||
\put(0.09213113,0.33342668){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}A\end{tabular}}}}%
|
||||
\put(0.16841141,0.33342668){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}M\end{tabular}}}}%
|
||||
\put(0.26539893,0.33342668){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}B\end{tabular}}}}%
|
||||
\put(0.09213113,0.1731967){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}A\end{tabular}}}}%
|
||||
\put(0.16841141,0.1731967){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}M\end{tabular}}}}%
|
||||
\put(0.26539893,0.1731967){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}B\end{tabular}}}}%
|
||||
\put(0.09213113,0.0129668){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}A\end{tabular}}}}%
|
||||
\put(0.16841141,0.0129668){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}M\end{tabular}}}}%
|
||||
\put(0.26539893,0.0129668){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}B\end{tabular}}}}%
|
||||
\put(0.09213113,0.49365655){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}A\end{tabular}}}}%
|
||||
\put(0.16841141,0.49365655){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}M\end{tabular}}}}%
|
||||
\put(0.26539893,0.49365655){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}B\end{tabular}}}}%
|
||||
\put(0.2653989,0.59931629){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}B'\end{tabular}}}}%
|
||||
\put(0.1685884,0.59931629){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}M'\end{tabular}}}}%
|
||||
\put(0.09283908,0.59931629){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}A'\end{tabular}}}}%
|
||||
\put(0.37636817,0.5660432){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}v\end{tabular}}}}%
|
||||
\put(0.29621008,0.4390864){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}B'\end{tabular}}}}%
|
||||
\put(0.19939959,0.4390864){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}M'\end{tabular}}}}%
|
||||
\put(0.12365026,0.4390864){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}A'\end{tabular}}}}%
|
||||
\put(0.40717936,0.40557729){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}v\end{tabular}}}}%
|
||||
\put(0.32668304,0.27885644){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}B'\end{tabular}}}}%
|
||||
\put(0.22987255,0.27885644){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}M'\end{tabular}}}}%
|
||||
\put(0.15412323,0.27885644){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}A'\end{tabular}}}}%
|
||||
\put(0.43765233,0.24511149){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}v\end{tabular}}}}%
|
||||
\put(0.35592483,0.11862652){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}B'\end{tabular}}}}%
|
||||
\put(0.25911433,0.11862652){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}M'\end{tabular}}}}%
|
||||
\put(0.18336501,0.11862652){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}A'\end{tabular}}}}%
|
||||
\put(0.46689408,0.08464552){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}v\end{tabular}}}}%
|
||||
\put(0.50079057,0.60358956){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}La foudre tombe en\\A, B, A' et B'\end{tabular}}}}%
|
||||
\put(0.49917602,0.44507927){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}Le signal lumineux issu de B\\atteint M' avant M\end{tabular}}}}%
|
||||
\put(0.49917602,0.28972241){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}Les deux signaux lumineux\\atteignent M simultanément\end{tabular}}}}%
|
||||
\put(0.49917602,0.12837534){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\lineheight{1.25}\smash{\begin{tabular}[t]{l}Le signal lumineux issu de A\\atteint M' après celui issu de B\end{tabular}}}}%
|
||||
\put(0.5019166,0.61485057){\color[rgb]{0,0,0}\makebox(0,0)[lt]{\begin{minipage}{0.15293437\unitlength}\raggedright \end{minipage}}}%
|
||||
\end{picture}%
|
||||
\endgroup%
|
|
@ -0,0 +1,283 @@
|
|||
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||||
<!-- Created with Inkscape (http://www.inkscape.org/) -->
|
||||
|
||||
<svg
|
||||
xmlns:dc="http://purl.org/dc/elements/1.1/"
|
||||
xmlns:cc="http://creativecommons.org/ns#"
|
||||
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
|
||||
xmlns:svg="http://www.w3.org/2000/svg"
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
|
||||
xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
|
||||
width="210mm"
|
||||
height="297mm"
|
||||
viewBox="0 0 210 297"
|
||||
version="1.1"
|
||||
id="svg8"
|
||||
inkscape:version="0.92.4 (5da689c313, 2019-01-14)"
|
||||
sodipodi:docname="MichelsonMorley.svg">
|
||||
<defs
|
||||
id="defs2">
|
||||
<marker
|
||||
inkscape:isstock="true"
|
||||
style="overflow:visible;"
|
||||
id="marker6279"
|
||||
refX="0.0"
|
||||
refY="0.0"
|
||||
orient="auto"
|
||||
inkscape:stockid="Arrow2Mend">
|
||||
<path
|
||||
transform="scale(0.6) rotate(180) translate(0,0)"
|
||||
d="M 8.7185878,4.0337352 L -2.2072895,0.016013256 L 8.7185884,-4.0017078 C 6.9730900,-1.6296469 6.9831476,1.6157441 8.7185878,4.0337352 z "
|
||||
style="fill-rule:evenodd;stroke-width:0.625;stroke-linejoin:round;stroke:#000000;stroke-opacity:1;fill:#000000;fill-opacity:1"
|
||||
id="path6277" />
|
||||
</marker>
|
||||
<marker
|
||||
inkscape:isstock="true"
|
||||
style="overflow:visible"
|
||||
id="marker6227"
|
||||
refX="0.0"
|
||||
refY="0.0"
|
||||
orient="auto"
|
||||
inkscape:stockid="Arrow2Mstart">
|
||||
<path
|
||||
transform="scale(0.6) translate(0,0)"
|
||||
d="M 8.7185878,4.0337352 L -2.2072895,0.016013256 L 8.7185884,-4.0017078 C 6.9730900,-1.6296469 6.9831476,1.6157441 8.7185878,4.0337352 z "
|
||||
style="fill-rule:evenodd;stroke-width:0.625;stroke-linejoin:round;stroke:#000000;stroke-opacity:1;fill:#000000;fill-opacity:1"
|
||||
id="path6225" />
|
||||
</marker>
|
||||
<marker
|
||||
inkscape:stockid="Arrow2Mend"
|
||||
orient="auto"
|
||||
refY="0.0"
|
||||
refX="0.0"
|
||||
id="Arrow2Mend"
|
||||
style="overflow:visible;"
|
||||
inkscape:isstock="true"
|
||||
inkscape:collect="always">
|
||||
<path
|
||||
id="path4568"
|
||||
style="fill-rule:evenodd;stroke-width:0.625;stroke-linejoin:round;stroke:#000000;stroke-opacity:1;fill:#000000;fill-opacity:1"
|
||||
d="M 8.7185878,4.0337352 L -2.2072895,0.016013256 L 8.7185884,-4.0017078 C 6.9730900,-1.6296469 6.9831476,1.6157441 8.7185878,4.0337352 z "
|
||||
transform="scale(0.6) rotate(180) translate(0,0)" />
|
||||
</marker>
|
||||
<marker
|
||||
inkscape:stockid="Arrow2Mstart"
|
||||
orient="auto"
|
||||
refY="0.0"
|
||||
refX="0.0"
|
||||
id="marker6123"
|
||||
style="overflow:visible"
|
||||
inkscape:isstock="true"
|
||||
inkscape:collect="always">
|
||||
<path
|
||||
id="path6121"
|
||||
style="fill-rule:evenodd;stroke-width:0.625;stroke-linejoin:round;stroke:#000000;stroke-opacity:1;fill:#000000;fill-opacity:1"
|
||||
d="M 8.7185878,4.0337352 L -2.2072895,0.016013256 L 8.7185884,-4.0017078 C 6.9730900,-1.6296469 6.9831476,1.6157441 8.7185878,4.0337352 z "
|
||||
transform="scale(0.6) translate(0,0)" />
|
||||
</marker>
|
||||
<marker
|
||||
inkscape:isstock="true"
|
||||
style="overflow:visible;"
|
||||
id="marker5499"
|
||||
refX="0.0"
|
||||
refY="0.0"
|
||||
orient="auto"
|
||||
inkscape:stockid="Arrow1Mend">
|
||||
<path
|
||||
transform="scale(0.4) rotate(180) translate(10,0)"
|
||||
style="fill-rule:evenodd;stroke:#b8bc00;stroke-width:1pt;stroke-opacity:1;fill:#b8bc00;fill-opacity:1"
|
||||
d="M 0.0,0.0 L 5.0,-5.0 L -12.5,0.0 L 5.0,5.0 L 0.0,0.0 z "
|
||||
id="path5497" />
|
||||
</marker>
|
||||
<marker
|
||||
inkscape:isstock="true"
|
||||
style="overflow:visible"
|
||||
id="marker5471"
|
||||
refX="0.0"
|
||||
refY="0.0"
|
||||
orient="auto"
|
||||
inkscape:stockid="Arrow2Mstart">
|
||||
<path
|
||||
transform="scale(0.6) translate(0,0)"
|
||||
d="M 8.7185878,4.0337352 L -2.2072895,0.016013256 L 8.7185884,-4.0017078 C 6.9730900,-1.6296469 6.9831476,1.6157441 8.7185878,4.0337352 z "
|
||||
style="fill-rule:evenodd;stroke-width:0.625;stroke-linejoin:round;stroke:#b8bc00;stroke-opacity:1;fill:#b8bc00;fill-opacity:1"
|
||||
id="path5469" />
|
||||
</marker>
|
||||
<marker
|
||||
inkscape:stockid="Arrow1Mend"
|
||||
orient="auto"
|
||||
refY="0.0"
|
||||
refX="0.0"
|
||||
id="Arrow1Mend"
|
||||
style="overflow:visible;"
|
||||
inkscape:isstock="true"
|
||||
inkscape:collect="always">
|
||||
<path
|
||||
id="path4550"
|
||||
d="M 0.0,0.0 L 5.0,-5.0 L -12.5,0.0 L 5.0,5.0 L 0.0,0.0 z "
|
||||
style="fill-rule:evenodd;stroke:#b8bc00;stroke-width:1pt;stroke-opacity:1;fill:#b8bc00;fill-opacity:1"
|
||||
transform="scale(0.4) rotate(180) translate(10,0)" />
|
||||
</marker>
|
||||
<marker
|
||||
inkscape:stockid="Arrow2Mstart"
|
||||
orient="auto"
|
||||
refY="0.0"
|
||||
refX="0.0"
|
||||
id="Arrow2Mstart"
|
||||
style="overflow:visible"
|
||||
inkscape:isstock="true"
|
||||
inkscape:collect="always">
|
||||
<path
|
||||
id="path4565"
|
||||
style="fill-rule:evenodd;stroke-width:0.625;stroke-linejoin:round;stroke:#b8bc00;stroke-opacity:1;fill:#b8bc00;fill-opacity:1"
|
||||
d="M 8.7185878,4.0337352 L -2.2072895,0.016013256 L 8.7185884,-4.0017078 C 6.9730900,-1.6296469 6.9831476,1.6157441 8.7185878,4.0337352 z "
|
||||
transform="scale(0.6) translate(0,0)" />
|
||||
</marker>
|
||||
</defs>
|
||||
<sodipodi:namedview
|
||||
id="base"
|
||||
pagecolor="#ffffff"
|
||||
bordercolor="#666666"
|
||||
borderopacity="1.0"
|
||||
inkscape:pageopacity="0.0"
|
||||
inkscape:pageshadow="2"
|
||||
inkscape:zoom="3.7487953"
|
||||
inkscape:cx="207.27783"
|
||||
inkscape:cy="924.28572"
|
||||
inkscape:document-units="mm"
|
||||
inkscape:current-layer="layer1"
|
||||
showgrid="false"
|
||||
inkscape:window-width="1920"
|
||||
inkscape:window-height="1080"
|
||||
inkscape:window-x="360"
|
||||
inkscape:window-y="0"
|
||||
inkscape:window-maximized="1" />
|
||||
<metadata
|
||||
id="metadata5">
|
||||
<rdf:RDF>
|
||||
<cc:Work
|
||||
rdf:about="">
|
||||
<dc:format>image/svg+xml</dc:format>
|
||||
<dc:type
|
||||
rdf:resource="http://purl.org/dc/dcmitype/StillImage" />
|
||||
<dc:title></dc:title>
|
||||
</cc:Work>
|
||||
</rdf:RDF>
|
||||
</metadata>
|
||||
<g
|
||||
inkscape:label="Calque 1"
|
||||
inkscape:groupmode="layer"
|
||||
id="layer1">
|
||||
<rect
|
||||
style="stroke-width:0.26499999;stroke-miterlimit:4;stroke-dasharray:none;fill:none;stroke:#000000;stroke-opacity:1"
|
||||
id="rect12"
|
||||
width="27.384354"
|
||||
height="3.5289114"
|
||||
x="28.725338"
|
||||
y="28.238106" />
|
||||
<rect
|
||||
y="75.165817"
|
||||
x="-78.419228"
|
||||
height="3.5289114"
|
||||
width="27.384354"
|
||||
id="rect822"
|
||||
style="fill:none;stroke:#000000;stroke-width:0.26499999;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||
transform="rotate(-90)" />
|
||||
<path
|
||||
sodipodi:type="star"
|
||||
style="fill:none;stroke:#b8bc00;stroke-width:0.26499999;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||
id="path834"
|
||||
sodipodi:sides="20"
|
||||
sodipodi:cx="42.417515"
|
||||
sodipodi:cy="64.727051"
|
||||
sodipodi:r1="8.7300444"
|
||||
sodipodi:r2="1.7460089"
|
||||
sodipodi:arg1="0.68231655"
|
||||
sodipodi:arg2="0.83939619"
|
||||
inkscape:flatsided="false"
|
||||
inkscape:rounded="0"
|
||||
inkscape:randomized="0"
|
||||
d="m 49.193024,70.232152 -5.609328,-4.205652 3.576541,6.029961 -4.03517,-5.733191 1.538133,6.840046 -2.066022,-6.699525 -0.650839,6.98058 0.105363,-7.010063 -2.776102,6.437805 2.266435,-6.634406 -4.629622,5.264853 4.205652,-5.609328 -6.029961,3.576541 5.733191,-4.03517 -6.840046,1.538133 6.699525,-2.066022 -6.980579,-0.650839 7.010062,0.105363 -6.437805,-2.776102 6.634407,2.266434 -5.264854,-4.629621 5.609329,4.205652 -3.576542,-6.029961 4.035171,5.733191 -1.538133,-6.840046 2.066022,6.699525 0.650839,-6.980579 -0.105363,7.010062 2.776102,-6.437805 -2.266435,6.634407 4.629621,-5.264854 -4.205652,5.609329 6.029961,-3.576542 -5.733191,4.035171 6.840046,-1.538133 -6.699525,2.066022 6.98058,0.650839 -7.010063,-0.105363 6.437805,2.776102 -6.634406,-2.266435 z" />
|
||||
<path
|
||||
style="fill:none;stroke:#b8bc00;stroke-width:0.30402493;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1;marker-start:url(#Arrow2Mstart);marker-end:url(#Arrow1Mend)"
|
||||
d="M 42.465222,64.610252 V 32.887431"
|
||||
id="path4539"
|
||||
inkscape:connector-curvature="0" />
|
||||
<path
|
||||
inkscape:connector-curvature="0"
|
||||
id="path5467"
|
||||
d="M 42.465222,64.610252 H 74.188043"
|
||||
style="fill:none;stroke:#b8bc00;stroke-width:0.30402493;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1;marker-start:url(#marker5471);marker-end:url(#marker5499)" />
|
||||
<path
|
||||
style="fill:none;stroke:#000000;stroke-width:0.26458332px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;marker-start:url(#marker6123);marker-end:url(#Arrow2Mend)"
|
||||
d="M 31.195576,32.684534 V 63.950688"
|
||||
id="path6119"
|
||||
inkscape:connector-curvature="0" />
|
||||
<path
|
||||
inkscape:connector-curvature="0"
|
||||
id="path6223"
|
||||
d="M 74.213006,76.972372 H 42.946852"
|
||||
style="fill:none;stroke:#000000;stroke-width:0.26458332px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;marker-start:url(#marker6227);marker-end:url(#marker6279)" />
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-style:normal;font-weight:normal;font-size:4.23333311px;line-height:1.25;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;stroke-width:0.26458332"
|
||||
x="45.805271"
|
||||
y="37.766167"
|
||||
id="text6685"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan6683"
|
||||
x="45.805271"
|
||||
y="37.766167"
|
||||
style="stroke-width:0.26458332">Miroir A</tspan></text>
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-style:normal;font-weight:normal;font-size:4.23333311px;line-height:1.25;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;stroke-width:0.26458332"
|
||||
x="57.02721"
|
||||
y="49.411575"
|
||||
id="text6689"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan6687"
|
||||
x="57.02721"
|
||||
y="49.411575"
|
||||
style="stroke-width:0.26458332">Miroir B</tspan></text>
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-style:normal;font-weight:normal;font-size:4.23333311px;line-height:1.25;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;stroke-width:0.26458332"
|
||||
x="32.889454"
|
||||
y="46.588444"
|
||||
id="text6693"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan6691"
|
||||
x="32.889454"
|
||||
y="46.588444"
|
||||
style="stroke-width:0.26458332">L</tspan></text>
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-style:normal;font-weight:normal;font-size:4.23333311px;line-height:1.25;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;stroke-width:0.26458332"
|
||||
x="57.73299"
|
||||
y="75.243202"
|
||||
id="text6697"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan6695"
|
||||
x="57.73299"
|
||||
y="75.243202"
|
||||
style="stroke-width:0.26458332">L</tspan></text>
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-style:normal;font-weight:normal;font-size:4.23333311px;line-height:1.25;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;stroke-width:0.26458332"
|
||||
x="48.628399"
|
||||
y="55.410721"
|
||||
id="text6713"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan6711"
|
||||
x="48.628399"
|
||||
y="55.410721"
|
||||
style="stroke-width:0.26458332">Source</tspan><tspan
|
||||
sodipodi:role="line"
|
||||
x="48.628399"
|
||||
y="60.702389"
|
||||
style="stroke-width:0.26458332"
|
||||
id="tspan6715">de lumière</tspan></text>
|
||||
</g>
|
||||
</svg>
|
After Width: | Height: | Size: 12 KiB |
|
@ -0,0 +1,296 @@
|
|||
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||||
<!-- Created with Inkscape (http://www.inkscape.org/) -->
|
||||
|
||||
<svg
|
||||
xmlns:dc="http://purl.org/dc/elements/1.1/"
|
||||
xmlns:cc="http://creativecommons.org/ns#"
|
||||
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
|
||||
xmlns:svg="http://www.w3.org/2000/svg"
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
|
||||
xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
|
||||
width="210mm"
|
||||
height="297mm"
|
||||
viewBox="0 0 210 297"
|
||||
version="1.1"
|
||||
id="svg8"
|
||||
inkscape:version="0.92.4 (5da689c313, 2019-01-14)"
|
||||
sodipodi:docname="conedelumiere.svg">
|
||||
<defs
|
||||
id="defs2">
|
||||
<marker
|
||||
inkscape:stockid="Arrow1Mend"
|
||||
orient="auto"
|
||||
refY="0.0"
|
||||
refX="0.0"
|
||||
id="marker1759"
|
||||
style="overflow:visible;"
|
||||
inkscape:isstock="true">
|
||||
<path
|
||||
id="path1757"
|
||||
d="M 0.0,0.0 L 5.0,-5.0 L -12.5,0.0 L 5.0,5.0 L 0.0,0.0 z "
|
||||
style="fill-rule:evenodd;stroke:#000000;stroke-width:1pt;stroke-opacity:1;fill:#000000;fill-opacity:1"
|
||||
transform="scale(0.4) rotate(180) translate(10,0)" />
|
||||
</marker>
|
||||
<marker
|
||||
inkscape:isstock="true"
|
||||
style="overflow:visible;"
|
||||
id="marker1477"
|
||||
refX="0.0"
|
||||
refY="0.0"
|
||||
orient="auto"
|
||||
inkscape:stockid="Arrow1Mend">
|
||||
<path
|
||||
transform="scale(0.4) rotate(180) translate(10,0)"
|
||||
style="fill-rule:evenodd;stroke:#d9c300;stroke-width:1pt;stroke-opacity:1;fill:#d9c300;fill-opacity:1"
|
||||
d="M 0.0,0.0 L 5.0,-5.0 L -12.5,0.0 L 5.0,5.0 L 0.0,0.0 z "
|
||||
id="path1475" />
|
||||
</marker>
|
||||
<marker
|
||||
inkscape:stockid="Arrow1Mend"
|
||||
orient="auto"
|
||||
refY="0.0"
|
||||
refX="0.0"
|
||||
id="marker1309"
|
||||
style="overflow:visible;"
|
||||
inkscape:isstock="true"
|
||||
inkscape:collect="always">
|
||||
<path
|
||||
id="path1307"
|
||||
d="M 0.0,0.0 L 5.0,-5.0 L -12.5,0.0 L 5.0,5.0 L 0.0,0.0 z "
|
||||
style="fill-rule:evenodd;stroke:#d9c300;stroke-width:1pt;stroke-opacity:1;fill:#d9c300;fill-opacity:1"
|
||||
transform="scale(0.4) rotate(180) translate(10,0)" />
|
||||
</marker>
|
||||
<marker
|
||||
inkscape:stockid="Arrow1Mend"
|
||||
orient="auto"
|
||||
refY="0.0"
|
||||
refX="0.0"
|
||||
id="marker1153"
|
||||
style="overflow:visible;"
|
||||
inkscape:isstock="true">
|
||||
<path
|
||||
id="path1151"
|
||||
d="M 0.0,0.0 L 5.0,-5.0 L -12.5,0.0 L 5.0,5.0 L 0.0,0.0 z "
|
||||
style="fill-rule:evenodd;stroke:#000000;stroke-width:1pt;stroke-opacity:1;fill:#000000;fill-opacity:1"
|
||||
transform="scale(0.4) rotate(180) translate(10,0)" />
|
||||
</marker>
|
||||
<marker
|
||||
inkscape:isstock="true"
|
||||
style="overflow:visible;"
|
||||
id="marker1111"
|
||||
refX="0.0"
|
||||
refY="0.0"
|
||||
orient="auto"
|
||||
inkscape:stockid="Arrow1Mend"
|
||||
inkscape:collect="always">
|
||||
<path
|
||||
transform="scale(0.4) rotate(180) translate(10,0)"
|
||||
style="fill-rule:evenodd;stroke:#000000;stroke-width:1pt;stroke-opacity:1;fill:#000000;fill-opacity:1"
|
||||
d="M 0.0,0.0 L 5.0,-5.0 L -12.5,0.0 L 5.0,5.0 L 0.0,0.0 z "
|
||||
id="path1109" />
|
||||
</marker>
|
||||
<marker
|
||||
inkscape:stockid="Arrow1Mend"
|
||||
orient="auto"
|
||||
refY="0.0"
|
||||
refX="0.0"
|
||||
id="Arrow1Mend"
|
||||
style="overflow:visible;"
|
||||
inkscape:isstock="true"
|
||||
inkscape:collect="always">
|
||||
<path
|
||||
id="path828"
|
||||
d="M 0.0,0.0 L 5.0,-5.0 L -12.5,0.0 L 5.0,5.0 L 0.0,0.0 z "
|
||||
style="fill-rule:evenodd;stroke:#000000;stroke-width:1pt;stroke-opacity:1;fill:#000000;fill-opacity:1"
|
||||
transform="scale(0.4) rotate(180) translate(10,0)" />
|
||||
</marker>
|
||||
</defs>
|
||||
<sodipodi:namedview
|
||||
id="base"
|
||||
pagecolor="#ffffff"
|
||||
bordercolor="#666666"
|
||||
borderopacity="1.0"
|
||||
inkscape:pageopacity="0.0"
|
||||
inkscape:pageshadow="2"
|
||||
inkscape:zoom="2.9079438"
|
||||
inkscape:cx="234.2857"
|
||||
inkscape:cy="901.42856"
|
||||
inkscape:document-units="mm"
|
||||
inkscape:current-layer="layer1"
|
||||
showgrid="false"
|
||||
inkscape:window-width="1920"
|
||||
inkscape:window-height="1080"
|
||||
inkscape:window-x="360"
|
||||
inkscape:window-y="0"
|
||||
inkscape:window-maximized="1" />
|
||||
<metadata
|
||||
id="metadata5">
|
||||
<rdf:RDF>
|
||||
<cc:Work
|
||||
rdf:about="">
|
||||
<dc:format>image/svg+xml</dc:format>
|
||||
<dc:type
|
||||
rdf:resource="http://purl.org/dc/dcmitype/StillImage" />
|
||||
<dc:title></dc:title>
|
||||
</cc:Work>
|
||||
</rdf:RDF>
|
||||
</metadata>
|
||||
<g
|
||||
inkscape:label="Calque 1"
|
||||
inkscape:groupmode="layer"
|
||||
id="layer1">
|
||||
<path
|
||||
inkscape:connector-curvature="0"
|
||||
id="path1107"
|
||||
d="M 25.021259,58.615632 H 98.356297"
|
||||
style="fill:none;stroke:#000000;stroke-width:0.26499999;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1;marker-end:url(#marker1111)" />
|
||||
<path
|
||||
style="fill:none;stroke:#000000;stroke-width:0.26499999;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1;marker-end:url(#marker1153)"
|
||||
d="M 97.781198,49.680217 26.625301,67.424686"
|
||||
id="path1149"
|
||||
inkscape:connector-curvature="0" />
|
||||
<path
|
||||
style="fill:none;stroke:#d9c300;stroke-width:0.34416634;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1;marker-end:url(#marker1309)"
|
||||
d="M 24.876011,88.315246 99.203208,28.760749"
|
||||
id="path1305"
|
||||
inkscape:connector-curvature="0" />
|
||||
<path
|
||||
inkscape:connector-curvature="0"
|
||||
id="path1473"
|
||||
d="M 99.260956,88.497219 24.933759,28.942722"
|
||||
style="fill:none;stroke:#d9c300;stroke-width:0.34416634;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1;marker-end:url(#marker1477)" />
|
||||
<ellipse
|
||||
style="fill:none;fill-opacity:1;stroke:#d9c300;stroke-width:0.439;stroke-miterlimit:4;stroke-dasharray:0.878,0.878;stroke-opacity:1;stroke-dashoffset:0"
|
||||
id="path1617"
|
||||
cx="62.098217"
|
||||
cy="28.271669"
|
||||
rx="37.354057"
|
||||
ry="5.3470531" />
|
||||
<ellipse
|
||||
ry="5.3470531"
|
||||
rx="37.354057"
|
||||
cy="88.777626"
|
||||
cx="62.098217"
|
||||
id="ellipse1679"
|
||||
style="fill:none;fill-opacity:1;stroke:#d9c300;stroke-width:0.43868774;stroke-miterlimit:4;stroke-dasharray:0.87737549,0.43868774;stroke-opacity:1;stroke-dashoffset:0" />
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-style:normal;font-weight:normal;font-size:3.88055563px;line-height:1.25;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;stroke-width:0.26458332"
|
||||
x="27.204933"
|
||||
y="64.438759"
|
||||
id="text1683"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan1681"
|
||||
x="27.204933"
|
||||
y="64.438759"
|
||||
style="stroke-width:0.26458332">x</tspan></text>
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-style:normal;font-weight:normal;font-size:3.88055563px;line-height:1.25;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;stroke-width:0.26458332"
|
||||
x="94.989799"
|
||||
y="56.249985"
|
||||
id="text1687"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan1685"
|
||||
x="94.989799"
|
||||
y="56.249985"
|
||||
style="stroke-width:0.26458332">y</tspan></text>
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-style:normal;font-weight:normal;font-size:3.88055563px;line-height:1.25;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;stroke-width:0.26458332"
|
||||
x="62.689629"
|
||||
y="27.407297"
|
||||
id="text1691"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan1689"
|
||||
x="62.689629"
|
||||
y="27.407297"
|
||||
style="stroke-width:0.26458332">ct</tspan></text>
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-style:normal;font-weight:normal;font-size:3.88055563px;line-height:1.25;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;stroke-width:0.26458332"
|
||||
x="27.750851"
|
||||
y="48.880085"
|
||||
id="text1695"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan1693"
|
||||
x="27.750851"
|
||||
y="48.880085"
|
||||
style="stroke-width:0.26458332">Ailleurs</tspan><tspan
|
||||
sodipodi:role="line"
|
||||
x="27.750851"
|
||||
y="53.730778"
|
||||
style="stroke-width:0.26458332"
|
||||
id="tspan1697">ou présent</tspan></text>
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-style:normal;font-weight:normal;font-size:3.88055563px;line-height:1.25;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;stroke-width:0.26458332"
|
||||
x="41.034866"
|
||||
y="38.143692"
|
||||
id="text1701"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan1699"
|
||||
x="41.034866"
|
||||
y="38.143692"
|
||||
style="stroke-width:0.26458332">Futur</tspan></text>
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-style:normal;font-weight:normal;font-size:3.88055563px;line-height:1.25;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;stroke-width:0.26458332"
|
||||
x="65.874153"
|
||||
y="80.543358"
|
||||
id="text1705"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan1703"
|
||||
x="65.874153"
|
||||
y="80.543358"
|
||||
style="stroke-width:0.26458332">Passé</tspan></text>
|
||||
<path
|
||||
style="fill:none;stroke:#000000;stroke-width:0.265;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:0.795,0.795;stroke-opacity:1;marker-end:url(#marker1759);stroke-dashoffset:0"
|
||||
d="M 43.578238,90.650087 80.061744,27.034196"
|
||||
id="path1755"
|
||||
inkscape:connector-curvature="0" />
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-style:normal;font-weight:normal;font-size:3.88055563px;line-height:1.25;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;stroke-width:0.26458332"
|
||||
x="47.949833"
|
||||
y="73.082466"
|
||||
id="text1853"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan1851"
|
||||
x="47.949833"
|
||||
y="73.082466"
|
||||
style="stroke-width:0.26458332">Trajet</tspan><tspan
|
||||
sodipodi:role="line"
|
||||
x="47.949833"
|
||||
y="77.933159"
|
||||
style="stroke-width:0.26458332"
|
||||
id="tspan1855">corps</tspan><tspan
|
||||
sodipodi:role="line"
|
||||
x="47.949833"
|
||||
y="82.783852"
|
||||
style="stroke-width:0.26458332"
|
||||
id="tspan1857">massif</tspan></text>
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-style:normal;font-weight:normal;font-size:3.88055563px;line-height:1.25;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#d9c300;fill-opacity:1;stroke:none;stroke-width:0.26458332;stroke-opacity:1"
|
||||
x="78.248306"
|
||||
y="66.258492"
|
||||
id="text1861"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan1859"
|
||||
x="78.248306"
|
||||
y="66.258492"
|
||||
style="fill:#d9c300;fill-opacity:1;stroke:none;stroke-width:0.26458332;stroke-opacity:1">Trajet</tspan><tspan
|
||||
sodipodi:role="line"
|
||||
x="78.248306"
|
||||
y="71.109184"
|
||||
style="fill:#d9c300;fill-opacity:1;stroke:none;stroke-width:0.26458332;stroke-opacity:1"
|
||||
id="tspan1863">lumière</tspan></text>
|
||||
<path
|
||||
style="fill:none;stroke:#000000;stroke-width:0.24852555;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1;marker-end:url(#Arrow1Mend)"
|
||||
d="M 61.688778,89.662297 V 19.960566"
|
||||
id="path817"
|
||||
inkscape:connector-curvature="0" />
|
||||
</g>
|
||||
</svg>
|
After Width: | Height: | Size: 12 KiB |
|
@ -0,0 +1,294 @@
|
|||
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||||
<!-- Created with Inkscape (http://www.inkscape.org/) -->
|
||||
|
||||
<svg
|
||||
xmlns:dc="http://purl.org/dc/elements/1.1/"
|
||||
xmlns:cc="http://creativecommons.org/ns#"
|
||||
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
|
||||
xmlns:svg="http://www.w3.org/2000/svg"
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
|
||||
xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
|
||||
width="210mm"
|
||||
height="297mm"
|
||||
viewBox="0 0 210 297"
|
||||
version="1.1"
|
||||
id="svg8"
|
||||
inkscape:version="0.92.4 (5da689c313, 2019-01-14)"
|
||||
sodipodi:docname="referentiels.svg">
|
||||
<defs
|
||||
id="defs2">
|
||||
<marker
|
||||
inkscape:isstock="true"
|
||||
style="overflow:visible;"
|
||||
id="marker5131"
|
||||
refX="0.0"
|
||||
refY="0.0"
|
||||
orient="auto"
|
||||
inkscape:stockid="Arrow1Mend">
|
||||
<path
|
||||
transform="scale(0.4) rotate(180) translate(10,0)"
|
||||
style="fill-rule:evenodd;stroke:#000000;stroke-width:1pt;stroke-opacity:1;fill:#000000;fill-opacity:1"
|
||||
d="M 0.0,0.0 L 5.0,-5.0 L -12.5,0.0 L 5.0,5.0 L 0.0,0.0 z "
|
||||
id="path5129" />
|
||||
</marker>
|
||||
<marker
|
||||
inkscape:isstock="true"
|
||||
style="overflow:visible;"
|
||||
id="marker5073"
|
||||
refX="0.0"
|
||||
refY="0.0"
|
||||
orient="auto"
|
||||
inkscape:stockid="Arrow1Mend">
|
||||
<path
|
||||
transform="scale(0.4) rotate(180) translate(10,0)"
|
||||
style="fill-rule:evenodd;stroke:#000000;stroke-width:1pt;stroke-opacity:1;fill:#000000;fill-opacity:1"
|
||||
d="M 0.0,0.0 L 5.0,-5.0 L -12.5,0.0 L 5.0,5.0 L 0.0,0.0 z "
|
||||
id="path5071" />
|
||||
</marker>
|
||||
<marker
|
||||
inkscape:stockid="Arrow1Mend"
|
||||
orient="auto"
|
||||
refY="0.0"
|
||||
refX="0.0"
|
||||
id="Arrow1Mend"
|
||||
style="overflow:visible;"
|
||||
inkscape:isstock="true"
|
||||
inkscape:collect="always">
|
||||
<path
|
||||
id="path4531"
|
||||
d="M 0.0,0.0 L 5.0,-5.0 L -12.5,0.0 L 5.0,5.0 L 0.0,0.0 z "
|
||||
style="fill-rule:evenodd;stroke:#000000;stroke-width:1pt;stroke-opacity:1;fill:#000000;fill-opacity:1"
|
||||
transform="scale(0.4) rotate(180) translate(10,0)" />
|
||||
</marker>
|
||||
<marker
|
||||
inkscape:stockid="Arrow1Mstart"
|
||||
orient="auto"
|
||||
refY="0.0"
|
||||
refX="0.0"
|
||||
id="Arrow1Mstart"
|
||||
style="overflow:visible"
|
||||
inkscape:isstock="true">
|
||||
<path
|
||||
id="path4528"
|
||||
d="M 0.0,0.0 L 5.0,-5.0 L -12.5,0.0 L 5.0,5.0 L 0.0,0.0 z "
|
||||
style="fill-rule:evenodd;stroke:#000000;stroke-width:1pt;stroke-opacity:1;fill:#000000;fill-opacity:1"
|
||||
transform="scale(0.4) translate(10,0)" />
|
||||
</marker>
|
||||
<marker
|
||||
inkscape:stockid="Arrow1Mstart"
|
||||
orient="auto"
|
||||
refY="0"
|
||||
refX="0"
|
||||
id="Arrow1Mstart-3"
|
||||
style="overflow:visible"
|
||||
inkscape:isstock="true">
|
||||
<path
|
||||
inkscape:connector-curvature="0"
|
||||
id="path4528-6"
|
||||
d="M 0,0 5,-5 -12.5,0 5,5 Z"
|
||||
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:1.00000003pt;stroke-opacity:1"
|
||||
transform="matrix(0.4,0,0,0.4,4,0)" />
|
||||
</marker>
|
||||
<marker
|
||||
inkscape:stockid="Arrow1Mend"
|
||||
orient="auto"
|
||||
refY="0"
|
||||
refX="0"
|
||||
id="Arrow1Mend-7"
|
||||
style="overflow:visible"
|
||||
inkscape:isstock="true">
|
||||
<path
|
||||
inkscape:connector-curvature="0"
|
||||
id="path4531-5"
|
||||
d="M 0,0 5,-5 -12.5,0 5,5 Z"
|
||||
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:1.00000003pt;stroke-opacity:1"
|
||||
transform="matrix(-0.4,0,0,-0.4,-4,0)" />
|
||||
</marker>
|
||||
<marker
|
||||
inkscape:isstock="true"
|
||||
style="overflow:visible"
|
||||
id="marker5131-5"
|
||||
refX="0"
|
||||
refY="0"
|
||||
orient="auto"
|
||||
inkscape:stockid="Arrow1Mend">
|
||||
<path
|
||||
inkscape:connector-curvature="0"
|
||||
transform="matrix(-0.4,0,0,-0.4,-4,0)"
|
||||
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:1.00000003pt;stroke-opacity:1"
|
||||
d="M 0,0 5,-5 -12.5,0 5,5 Z"
|
||||
id="path5129-6" />
|
||||
</marker>
|
||||
<marker
|
||||
inkscape:isstock="true"
|
||||
style="overflow:visible"
|
||||
id="marker5073-9"
|
||||
refX="0"
|
||||
refY="0"
|
||||
orient="auto"
|
||||
inkscape:stockid="Arrow1Mend">
|
||||
<path
|
||||
inkscape:connector-curvature="0"
|
||||
transform="matrix(-0.4,0,0,-0.4,-4,0)"
|
||||
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:1.00000003pt;stroke-opacity:1"
|
||||
d="M 0,0 5,-5 -12.5,0 5,5 Z"
|
||||
id="path5071-1" />
|
||||
</marker>
|
||||
</defs>
|
||||
<sodipodi:namedview
|
||||
id="base"
|
||||
pagecolor="#ffffff"
|
||||
bordercolor="#666666"
|
||||
borderopacity="1.0"
|
||||
inkscape:pageopacity="0.0"
|
||||
inkscape:pageshadow="2"
|
||||
inkscape:zoom="2.7501509"
|
||||
inkscape:cx="66.733116"
|
||||
inkscape:cy="997.03426"
|
||||
inkscape:document-units="mm"
|
||||
inkscape:current-layer="layer1"
|
||||
showgrid="false"
|
||||
inkscape:window-width="960"
|
||||
inkscape:window-height="1080"
|
||||
inkscape:window-x="360"
|
||||
inkscape:window-y="0"
|
||||
inkscape:window-maximized="1" />
|
||||
<metadata
|
||||
id="metadata5">
|
||||
<rdf:RDF>
|
||||
<cc:Work
|
||||
rdf:about="">
|
||||
<dc:format>image/svg+xml</dc:format>
|
||||
<dc:type
|
||||
rdf:resource="http://purl.org/dc/dcmitype/StillImage" />
|
||||
<dc:title></dc:title>
|
||||
</cc:Work>
|
||||
</rdf:RDF>
|
||||
</metadata>
|
||||
<g
|
||||
inkscape:label="Calque 1"
|
||||
inkscape:groupmode="layer"
|
||||
id="layer1">
|
||||
<path
|
||||
style="fill:none;stroke:#000000;stroke-width:0.28784618;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1;marker-start:url(#Arrow1Mstart);marker-end:url(#Arrow1Mend)"
|
||||
d="M 34.693878,8.887411 V 33.479583 L 12.526285,49.204719"
|
||||
id="path3715"
|
||||
inkscape:connector-curvature="0" />
|
||||
<path
|
||||
style="fill:none;stroke:#000000;stroke-width:0.26499999;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1;marker-start:url(#Arrow1Mstart-3);marker-end:url(#Arrow1Mend-7)"
|
||||
d="M 63.333173,18.666152 V 41.306459 L 42.925009,55.783502"
|
||||
id="path3715-3"
|
||||
inkscape:connector-curvature="0" />
|
||||
<path
|
||||
style="fill:none;stroke:#000000;stroke-width:0.26458332px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;marker-end:url(#marker5073)"
|
||||
d="M 34.693878,33.479583 87.436226,47.956625"
|
||||
id="path5063"
|
||||
inkscape:connector-curvature="0" />
|
||||
<path
|
||||
style="fill:none;stroke:#000000;stroke-width:0.26458332px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;marker-end:url(#marker5131)"
|
||||
d="M 34.693878,33.479583 26.913266,18.811216"
|
||||
id="path5117"
|
||||
inkscape:connector-curvature="0" />
|
||||
<path
|
||||
style="fill:none;stroke:#000000;stroke-width:0.26458332px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;marker-end:url(#marker5131-5)"
|
||||
d="M 63.333173,41.306459 26.913266,18.811216"
|
||||
id="path5117-2"
|
||||
inkscape:connector-curvature="0"
|
||||
sodipodi:nodetypes="cc" />
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-style:normal;font-weight:normal;font-size:4.23333311px;line-height:1.25;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;stroke-width:0.26458332"
|
||||
x="80.931122"
|
||||
y="43.93877"
|
||||
id="text5506"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan5504"
|
||||
x="80.931122"
|
||||
y="43.93877"
|
||||
style="stroke-width:0.26458332">x</tspan></text>
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-style:normal;font-weight:normal;font-size:4.23333311px;line-height:1.25;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;stroke-width:0.26458332"
|
||||
x="65.756897"
|
||||
y="20.03056"
|
||||
id="text5510"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan5508"
|
||||
x="65.756897"
|
||||
y="20.03056"
|
||||
style="stroke-width:0.26458332">y'</tspan></text>
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-style:normal;font-weight:normal;font-size:4.23333311px;line-height:1.25;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;stroke-width:0.26458332"
|
||||
x="36.573624"
|
||||
y="12.610858"
|
||||
id="text5514"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan5512"
|
||||
x="36.573624"
|
||||
y="12.610858"
|
||||
style="stroke-width:0.26458332">y</tspan></text>
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-style:normal;font-weight:normal;font-size:4.23333311px;line-height:1.25;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;stroke-width:0.26458332"
|
||||
x="15.688776"
|
||||
y="42.535706"
|
||||
id="text5518"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan5516"
|
||||
x="15.688776"
|
||||
y="42.535706"
|
||||
style="stroke-width:0.26458332">z</tspan></text>
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-style:normal;font-weight:normal;font-size:4.23333311px;line-height:1.25;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;stroke-width:0.26458332"
|
||||
x="42.793369"
|
||||
y="51.464279"
|
||||
id="text5522"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan5520"
|
||||
x="42.793369"
|
||||
y="51.464279"
|
||||
style="stroke-width:0.26458332">z'</tspan></text>
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-style:normal;font-weight:normal;font-size:4.23333311px;line-height:1.25;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;stroke-width:0.26458332"
|
||||
x="12.175505"
|
||||
y="16.176485"
|
||||
id="text5526"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan5524"
|
||||
x="12.175505"
|
||||
y="16.176485"
|
||||
style="stroke-width:0.26458332">r</tspan></text>
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-style:normal;font-weight:normal;font-size:4.23333311px;line-height:1.25;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;stroke-width:0.26458332"
|
||||
x="36.130096"
|
||||
y="22.676517"
|
||||
id="text5530"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan5528"
|
||||
x="36.130096"
|
||||
y="22.676517"
|
||||
style="stroke-width:0.26458332">r'</tspan></text>
|
||||
<path
|
||||
style="fill:none;stroke:#000000;stroke-width:0.26458332px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;marker-end:url(#marker5073-9)"
|
||||
d="m 63.382177,29.730766 22.130104,4.910715"
|
||||
id="path5063-2"
|
||||
inkscape:connector-curvature="0"
|
||||
sodipodi:nodetypes="cc" />
|
||||
<text
|
||||
xml:space="preserve"
|
||||
style="font-style:normal;font-weight:normal;font-size:4.23333311px;line-height:1.25;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;stroke-width:0.26458332"
|
||||
x="79.528069"
|
||||
y="30.163256"
|
||||
id="text6406"><tspan
|
||||
sodipodi:role="line"
|
||||
id="tspan6404"
|
||||
x="79.528069"
|
||||
y="30.163256"
|
||||
style="stroke-width:0.26458332">V</tspan></text>
|
||||
</g>
|
||||
</svg>
|
After Width: | Height: | Size: 11 KiB |
File diff suppressed because it is too large
Load Diff
After Width: | Height: | Size: 70 KiB |
|
@ -0,0 +1,30 @@
|
|||
1 1 0.1 1 2
|
||||
2 4 0.4 2 4
|
||||
3 11 0.2 3 6
|
||||
4 18 0.5 4 8
|
||||
5 26 0.3 5 10
|
||||
6 31 0.1 6 12
|
||||
|
||||
|
||||
10 16 5
|
||||
20 45 10
|
||||
30 53 15
|
||||
40 89 20
|
||||
50 110 25
|
||||
60 135 30
|
||||
70 140 35
|
||||
80 155 40
|
||||
90 170 45
|
||||
100 200 50
|
||||
|
||||
|
||||
10 15 1
|
||||
20 14 1
|
||||
30 15 1
|
||||
40 13 1
|
||||
50 15 1
|
||||
60 15 1
|
||||
70 14 1
|
||||
80 15 1
|
||||
90 14 1
|
||||
100 14 1
|
Loading…
Reference in New Issue